Open maps between Knaster continua
Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 119-148.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the set of open maps from one Knaster continuum to another. A structure theorem for the semigroup of open induced maps on a Knaster continuum is obtained. Homeomorphisms which are not induced are constructed, and it is shown that the induced open maps are dense in the space of open maps between two Knaster continua. Results about the structure of the semigroup of open maps on a Knaster continuum are obtained and two questions about the structure are posed.
DOI : 10.4064/fm-162-2-119-148
Keywords: continuum, degree, indecomposable, (induced) open mapping, semigroup, approximating sequence

Carl Eberhart 1 ; J. B. Fugate 1 ; Shannon Schumann 1

1
@article{10_4064_fm_162_2_119_148,
     author = {Carl Eberhart and J. B. Fugate and Shannon Schumann},
     title = {Open maps between {Knaster} continua},
     journal = {Fundamenta Mathematicae},
     pages = {119--148},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {1999},
     doi = {10.4064/fm-162-2-119-148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-119-148/}
}
TY  - JOUR
AU  - Carl Eberhart
AU  - J. B. Fugate
AU  - Shannon Schumann
TI  - Open maps between Knaster continua
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 119
EP  - 148
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-119-148/
DO  - 10.4064/fm-162-2-119-148
LA  - en
ID  - 10_4064_fm_162_2_119_148
ER  - 
%0 Journal Article
%A Carl Eberhart
%A J. B. Fugate
%A Shannon Schumann
%T Open maps between Knaster continua
%J Fundamenta Mathematicae
%D 1999
%P 119-148
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-119-148/
%R 10.4064/fm-162-2-119-148
%G en
%F 10_4064_fm_162_2_119_148
Carl Eberhart; J. B. Fugate; Shannon Schumann. Open maps between Knaster continua. Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 119-148. doi : 10.4064/fm-162-2-119-148. http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-119-148/

Cité par Sources :