Open maps between Knaster continua
Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 119-148
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the set of open maps from one Knaster continuum to another. A structure theorem for the semigroup of open induced maps on a Knaster continuum is obtained. Homeomorphisms which are not induced are constructed, and it is shown that the induced open maps are dense in the space of open maps between two Knaster continua. Results about the structure of the semigroup of open maps on a Knaster continuum are obtained and two questions about the structure are posed.
Keywords:
continuum, degree, indecomposable, (induced) open mapping, semigroup, approximating sequence
Affiliations des auteurs :
Carl Eberhart 1 ; J. B. Fugate 1 ; Shannon Schumann 1
@article{10_4064_fm_162_2_119_148,
author = {Carl Eberhart and J. B. Fugate and Shannon Schumann},
title = {Open maps between {Knaster} continua},
journal = {Fundamenta Mathematicae},
pages = {119--148},
publisher = {mathdoc},
volume = {162},
number = {2},
year = {1999},
doi = {10.4064/fm-162-2-119-148},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-119-148/}
}
TY - JOUR AU - Carl Eberhart AU - J. B. Fugate AU - Shannon Schumann TI - Open maps between Knaster continua JO - Fundamenta Mathematicae PY - 1999 SP - 119 EP - 148 VL - 162 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-119-148/ DO - 10.4064/fm-162-2-119-148 LA - en ID - 10_4064_fm_162_2_119_148 ER -
%0 Journal Article %A Carl Eberhart %A J. B. Fugate %A Shannon Schumann %T Open maps between Knaster continua %J Fundamenta Mathematicae %D 1999 %P 119-148 %V 162 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-119-148/ %R 10.4064/fm-162-2-119-148 %G en %F 10_4064_fm_162_2_119_148
Carl Eberhart; J. B. Fugate; Shannon Schumann. Open maps between Knaster continua. Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 119-148. doi: 10.4064/fm-162-2-119-148
Cité par Sources :