On entropy of patterns given by interval maps
Fundamenta Mathematicae, Tome 162 (1999) no. 1, pp. 1-36
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Defining the complexity of a green pattern exhibited by an interval map, we give the best bounds of the topological entropy of a pattern with a given complexity. Moreover, we show that the topological entropy attains its strict minimum on the set of patterns with fixed eccentricity m/n at a unimodal X-minimal case. Using a different method, the last result was independently proved in[11].
Keywords:
interval map, topological entropy, cycle, pattern
Affiliations des auteurs :
Jozef Bobok 1
@article{10_4064_fm_162_1_1_36,
author = {Jozef Bobok},
title = {On entropy of patterns given by interval maps},
journal = {Fundamenta Mathematicae},
pages = {1--36},
publisher = {mathdoc},
volume = {162},
number = {1},
year = {1999},
doi = {10.4064/fm-162-1-1-36},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-1-1-36/}
}
Jozef Bobok. On entropy of patterns given by interval maps. Fundamenta Mathematicae, Tome 162 (1999) no. 1, pp. 1-36. doi: 10.4064/fm-162-1-1-36
Cité par Sources :