Partition properties of subsets of $\mathcal P_\kappa \lambda$
Fundamenta Mathematicae, Tome 161 (1999) no. 3, pp. 325-329.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let κ > ω be a regular cardinal and λ > κ a cardinal. The following partition property is shown to be consistent relative to a supercompact cardinal: For any $f : ∪_{n ω}[X]^{n}_⊂ → γ$ with $X⊂P_κλ$ unbounded and 1 γ κ there is an unbounded Y ∪ X with $|f''[Y]^n_⊂| = 1$ for any n ω.
DOI : 10.4064/fm-161-3-325-329

Masahiro Shioya 1

1
@article{10_4064_fm_161_3_325_329,
     author = {Masahiro Shioya},
     title = {Partition properties of subsets of $\mathcal P_\kappa \lambda$},
     journal = {Fundamenta Mathematicae},
     pages = {325--329},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {1999},
     doi = {10.4064/fm-161-3-325-329},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-325-329/}
}
TY  - JOUR
AU  - Masahiro Shioya
TI  - Partition properties of subsets of $\mathcal P_\kappa \lambda$
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 325
EP  - 329
VL  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-325-329/
DO  - 10.4064/fm-161-3-325-329
LA  - en
ID  - 10_4064_fm_161_3_325_329
ER  - 
%0 Journal Article
%A Masahiro Shioya
%T Partition properties of subsets of $\mathcal P_\kappa \lambda$
%J Fundamenta Mathematicae
%D 1999
%P 325-329
%V 161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-325-329/
%R 10.4064/fm-161-3-325-329
%G en
%F 10_4064_fm_161_3_325_329
Masahiro Shioya. Partition properties of subsets of $\mathcal P_\kappa \lambda$. Fundamenta Mathematicae, Tome 161 (1999) no. 3, pp. 325-329. doi : 10.4064/fm-161-3-325-329. http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-325-329/

Cité par Sources :