Partition properties of subsets of $\mathcal P_\kappa \lambda$
Fundamenta Mathematicae, Tome 161 (1999) no. 3, pp. 325-329
Let κ > ω be a regular cardinal and λ > κ a cardinal. The following partition property is shown to be consistent relative to a supercompact cardinal: For any $f : ∪_{n ω}[X]^{n}_⊂ → γ$ with $X⊂P_κλ$ unbounded and 1 γ κ there is an unbounded Y ∪ X with $|f''[Y]^n_⊂| = 1$ for any n ω.
@article{10_4064_fm_161_3_325_329,
author = {Masahiro Shioya},
title = {Partition properties of subsets of $\mathcal P_\kappa \lambda$},
journal = {Fundamenta Mathematicae},
pages = {325--329},
year = {1999},
volume = {161},
number = {3},
doi = {10.4064/fm-161-3-325-329},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-325-329/}
}
TY - JOUR AU - Masahiro Shioya TI - Partition properties of subsets of $\mathcal P_\kappa \lambda$ JO - Fundamenta Mathematicae PY - 1999 SP - 325 EP - 329 VL - 161 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-325-329/ DO - 10.4064/fm-161-3-325-329 LA - en ID - 10_4064_fm_161_3_325_329 ER -
Masahiro Shioya. Partition properties of subsets of $\mathcal P_\kappa \lambda$. Fundamenta Mathematicae, Tome 161 (1999) no. 3, pp. 325-329. doi: 10.4064/fm-161-3-325-329
Cité par Sources :