The Equivariant Bundle Subtraction Theorem and its applications
Fundamenta Mathematicae, Tome 161 (1999) no. 3, pp. 279-303
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In the theory of transformation groups, it is important to know what kind of isotropy subgroups of G do occur at points of the space upon which the given group G acts. In this article, for a finite group G, we prove the Equivariant Bundle Subtraction Theorem (Theorem 2.2) which allows us to construct smooth G-manifolds with prescribed isotropy subgroups around the G-fixed point sets. In Theorem 0.1, we restate Oliver's result about manifolds M and G-vector bundles over M that occur, respectively, as the G-fixed point sets and their equivariant normal bundles for smooth G-actions on disks. In Theorems 0.2 and 0.3, we prove the corresponding results for smooth G-actions on disks with prescribed isotropy subgroups around M. In Theorems 0.4 and 0.5, for large classes of finite groups G, we explicitly describe manifolds M that occur as the G-fixed point sets for such actions on disks. These actions are expected to be useful for answering the question of which manifolds occur as the G-fixed points sets for smooth G-actions on spheres.
Keywords:
equivariant bundle subtraction, smooth action on disk, fixed point set, equivariant normal bundle, the family of large subgroups of a finite group
Affiliations des auteurs :
Masaharu Morimoto 1 ; Krzysztof Pawałowski 1
@article{10_4064_fm_161_3_279_303,
author = {Masaharu Morimoto and Krzysztof Pawa{\l}owski},
title = {The {Equivariant} {Bundle} {Subtraction} {Theorem} and its applications},
journal = {Fundamenta Mathematicae},
pages = {279--303},
publisher = {mathdoc},
volume = {161},
number = {3},
year = {1999},
doi = {10.4064/fm-161-3-279-303},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-279-303/}
}
TY - JOUR AU - Masaharu Morimoto AU - Krzysztof Pawałowski TI - The Equivariant Bundle Subtraction Theorem and its applications JO - Fundamenta Mathematicae PY - 1999 SP - 279 EP - 303 VL - 161 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-279-303/ DO - 10.4064/fm-161-3-279-303 LA - en ID - 10_4064_fm_161_3_279_303 ER -
%0 Journal Article %A Masaharu Morimoto %A Krzysztof Pawałowski %T The Equivariant Bundle Subtraction Theorem and its applications %J Fundamenta Mathematicae %D 1999 %P 279-303 %V 161 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-279-303/ %R 10.4064/fm-161-3-279-303 %G en %F 10_4064_fm_161_3_279_303
Masaharu Morimoto; Krzysztof Pawałowski. The Equivariant Bundle Subtraction Theorem and its applications. Fundamenta Mathematicae, Tome 161 (1999) no. 3, pp. 279-303. doi: 10.4064/fm-161-3-279-303
Cité par Sources :