The Equivariant Bundle Subtraction Theorem and its applications
Fundamenta Mathematicae, Tome 161 (1999) no. 3, pp. 279-303.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In the theory of transformation groups, it is important to know what kind of isotropy subgroups of G do occur at points of the space upon which the given group G acts. In this article, for a finite group G, we prove the Equivariant Bundle Subtraction Theorem (Theorem 2.2) which allows us to construct smooth G-manifolds with prescribed isotropy subgroups around the G-fixed point sets. In Theorem 0.1, we restate Oliver's result about manifolds M and G-vector bundles over M that occur, respectively, as the G-fixed point sets and their equivariant normal bundles for smooth G-actions on disks. In Theorems 0.2 and 0.3, we prove the corresponding results for smooth G-actions on disks with prescribed isotropy subgroups around M. In Theorems 0.4 and 0.5, for large classes of finite groups G, we explicitly describe manifolds M that occur as the G-fixed point sets for such actions on disks. These actions are expected to be useful for answering the question of which manifolds occur as the G-fixed points sets for smooth G-actions on spheres.
DOI : 10.4064/fm-161-3-279-303
Keywords: equivariant bundle subtraction, smooth action on disk, fixed point set, equivariant normal bundle, the family of large subgroups of a finite group

Masaharu Morimoto 1 ; Krzysztof Pawałowski 1

1
@article{10_4064_fm_161_3_279_303,
     author = {Masaharu Morimoto and Krzysztof Pawa{\l}owski},
     title = {The {Equivariant} {Bundle} {Subtraction} {Theorem} and its applications},
     journal = {Fundamenta Mathematicae},
     pages = {279--303},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {1999},
     doi = {10.4064/fm-161-3-279-303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-279-303/}
}
TY  - JOUR
AU  - Masaharu Morimoto
AU  - Krzysztof Pawałowski
TI  - The Equivariant Bundle Subtraction Theorem and its applications
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 279
EP  - 303
VL  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-279-303/
DO  - 10.4064/fm-161-3-279-303
LA  - en
ID  - 10_4064_fm_161_3_279_303
ER  - 
%0 Journal Article
%A Masaharu Morimoto
%A Krzysztof Pawałowski
%T The Equivariant Bundle Subtraction Theorem and its applications
%J Fundamenta Mathematicae
%D 1999
%P 279-303
%V 161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-279-303/
%R 10.4064/fm-161-3-279-303
%G en
%F 10_4064_fm_161_3_279_303
Masaharu Morimoto; Krzysztof Pawałowski. The Equivariant Bundle Subtraction Theorem and its applications. Fundamenta Mathematicae, Tome 161 (1999) no. 3, pp. 279-303. doi : 10.4064/fm-161-3-279-303. http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-279-303/

Cité par Sources :