Compacts connexes invariants par une application univalente
Fundamenta Mathematicae, Tome 161 (1999) no. 3, pp. 241-277.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let K be a compact connected subset of cc, not reduced to a point, and F a univalent map in a neighborhood of K such that F(K) = K. This work presents a study and a classification of the dynamics of F in a neighborhood of K. When ℂ \ K has one or two connected components, it is proved that there is a natural rotation number associated with the dynamics. If this rotation number is irrational, the situation is close to that of "degenerate Siegel disks" or "degenerate Herman rings" studied by R. Pérez-Marco (in particular, any point of K is recurrent). In any other case (that is, if this number is rational or if ℂ \ K has more than two connected components), the situation is essentially trivial: the dynamics is of Morse-Smale type, and a complete description and classification modulo analytic conjugacy is given.
DOI : 10.4064/fm-161-3-241-277

Emmanuel Risler 1

1
@article{10_4064_fm_161_3_241_277,
     author = {Emmanuel Risler},
     title = {Compacts connexes invariants par une application univalente},
     journal = {Fundamenta Mathematicae},
     pages = {241--277},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {1999},
     doi = {10.4064/fm-161-3-241-277},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-241-277/}
}
TY  - JOUR
AU  - Emmanuel Risler
TI  - Compacts connexes invariants par une application univalente
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 241
EP  - 277
VL  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-241-277/
DO  - 10.4064/fm-161-3-241-277
LA  - fr
ID  - 10_4064_fm_161_3_241_277
ER  - 
%0 Journal Article
%A Emmanuel Risler
%T Compacts connexes invariants par une application univalente
%J Fundamenta Mathematicae
%D 1999
%P 241-277
%V 161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-241-277/
%R 10.4064/fm-161-3-241-277
%G fr
%F 10_4064_fm_161_3_241_277
Emmanuel Risler. Compacts connexes invariants par une application univalente. Fundamenta Mathematicae, Tome 161 (1999) no. 3, pp. 241-277. doi : 10.4064/fm-161-3-241-277. http://geodesic.mathdoc.fr/articles/10.4064/fm-161-3-241-277/

Cité par Sources :