The universal functorial Lefschetz invariant
Fundamenta Mathematicae, Tome 161 (1999) no. 1, pp. 167-215.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce the universal functorial Lefschetz invariant for endomorphisms of finite CW-complexes in terms of Grothendieck groups of endomorphisms of finitely generated free modules. It encompasses invariants like Lefschetz number, its generalization to the Lefschetz invariant, Nielsen number and $L^2$-torsion of mapping tori. We examine its behaviour under fibrations.
DOI : 10.4064/fm-161-1-2-167-215
Mots-clés : universal functorial Lefschetz invariants, Grothendieck group of endomorphisms of modules, transfer maps

Wolfgang Lück 1

1
@article{10_4064_fm_161_1_2_167_215,
     author = {Wolfgang  L\"uck},
     title = {The universal functorial {Lefschetz} invariant},
     journal = {Fundamenta Mathematicae},
     pages = {167--215},
     publisher = {mathdoc},
     volume = {161},
     number = {1},
     year = {1999},
     doi = {10.4064/fm-161-1-2-167-215},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-167-215/}
}
TY  - JOUR
AU  - Wolfgang  Lück
TI  - The universal functorial Lefschetz invariant
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 167
EP  - 215
VL  - 161
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-167-215/
DO  - 10.4064/fm-161-1-2-167-215
LA  - de
ID  - 10_4064_fm_161_1_2_167_215
ER  - 
%0 Journal Article
%A Wolfgang  Lück
%T The universal functorial Lefschetz invariant
%J Fundamenta Mathematicae
%D 1999
%P 167-215
%V 161
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-167-215/
%R 10.4064/fm-161-1-2-167-215
%G de
%F 10_4064_fm_161_1_2_167_215
Wolfgang  Lück. The universal functorial Lefschetz invariant. Fundamenta Mathematicae, Tome 161 (1999) no. 1, pp. 167-215. doi : 10.4064/fm-161-1-2-167-215. http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-167-215/

Cité par Sources :