Splitting obstructions and properties of objects in the Nil categories
Fundamenta Mathematicae, Tome 161 (1999) no. 1, pp. 155-165.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the objects of Bass-Farrell categories which represent 0 in the corresponding Nil groups are precisely those which are stably triangular. This extends to Waldhausen's Nil group of the amalgamated free product with index 2 factors. Applications include a description of Cappell's special UNil group and reformulations of those splitting and fibering theorems which use the Nil groups.
DOI : 10.4064/fm-161-1-2-155-165

Tadeusz Koźniewski  1

1
@article{10_4064_fm_161_1_2_155_165,
     author = {Tadeusz Ko\'zniewski },
     title = {Splitting obstructions and properties of objects in the {Nil} categories},
     journal = {Fundamenta Mathematicae},
     pages = {155--165},
     publisher = {mathdoc},
     volume = {161},
     number = {1},
     year = {1999},
     doi = {10.4064/fm-161-1-2-155-165},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-155-165/}
}
TY  - JOUR
AU  - Tadeusz Koźniewski 
TI  - Splitting obstructions and properties of objects in the Nil categories
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 155
EP  - 165
VL  - 161
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-155-165/
DO  - 10.4064/fm-161-1-2-155-165
LA  - en
ID  - 10_4064_fm_161_1_2_155_165
ER  - 
%0 Journal Article
%A Tadeusz Koźniewski 
%T Splitting obstructions and properties of objects in the Nil categories
%J Fundamenta Mathematicae
%D 1999
%P 155-165
%V 161
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-155-165/
%R 10.4064/fm-161-1-2-155-165
%G en
%F 10_4064_fm_161_1_2_155_165
Tadeusz Koźniewski . Splitting obstructions and properties of objects in the Nil categories. Fundamenta Mathematicae, Tome 161 (1999) no. 1, pp. 155-165. doi : 10.4064/fm-161-1-2-155-165. http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-155-165/

Cité par Sources :