Bimorphisms in pro-homotopy and proper homotopy
Fundamenta Mathematicae, Tome 160 (1999) no. 3, pp. 269-286
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A morphism of a category which is simultaneously an epimorphism and a monomorphism is called a bimorphism. The category is balanced if every bimorphism is an isomorphism. In the paper properties of bimorphisms of several categories are discussed (pro-homotopy, shape, proper homotopy) and the question of those categories being balanced is raised. Our most interesting result is that a bimorphism f:X → Y of $tow(H_0)$ is an isomorphism if Y is movable. Recall that $\tow(H_0)$ is the full subcategory of $pro-H_0$ consisting of inverse sequences in $H_0$, the homotopy category of pointed connected CW complexes.
Keywords:
epimorphism, monomorphism, pro-homotopy, shape, proper homotopy
Affiliations des auteurs :
Jerzy Dydak 1 ; Francisco Romero Ruiz del Portal 1
@article{10_4064_fm_160_3_269_286,
author = {Jerzy Dydak and Francisco Romero Ruiz del Portal},
title = {Bimorphisms in pro-homotopy and proper homotopy},
journal = {Fundamenta Mathematicae},
pages = {269--286},
publisher = {mathdoc},
volume = {160},
number = {3},
year = {1999},
doi = {10.4064/fm-160-3-269-286},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-269-286/}
}
TY - JOUR AU - Jerzy Dydak AU - Francisco Romero Ruiz del Portal TI - Bimorphisms in pro-homotopy and proper homotopy JO - Fundamenta Mathematicae PY - 1999 SP - 269 EP - 286 VL - 160 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-269-286/ DO - 10.4064/fm-160-3-269-286 LA - en ID - 10_4064_fm_160_3_269_286 ER -
%0 Journal Article %A Jerzy Dydak %A Francisco Romero Ruiz del Portal %T Bimorphisms in pro-homotopy and proper homotopy %J Fundamenta Mathematicae %D 1999 %P 269-286 %V 160 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-269-286/ %R 10.4064/fm-160-3-269-286 %G en %F 10_4064_fm_160_3_269_286
Jerzy Dydak; Francisco Romero Ruiz del Portal. Bimorphisms in pro-homotopy and proper homotopy. Fundamenta Mathematicae, Tome 160 (1999) no. 3, pp. 269-286. doi: 10.4064/fm-160-3-269-286
Cité par Sources :