Bimorphisms in pro-homotopy and proper homotopy
Fundamenta Mathematicae, Tome 160 (1999) no. 3, pp. 269-286.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A morphism of a category which is simultaneously an epimorphism and a monomorphism is called a bimorphism. The category is balanced if every bimorphism is an isomorphism. In the paper properties of bimorphisms of several categories are discussed (pro-homotopy, shape, proper homotopy) and the question of those categories being balanced is raised. Our most interesting result is that a bimorphism f:X → Y of $tow(H_0)$ is an isomorphism if Y is movable. Recall that $\tow(H_0)$ is the full subcategory of $pro-H_0$ consisting of inverse sequences in $H_0$, the homotopy category of pointed connected CW complexes.
DOI : 10.4064/fm-160-3-269-286
Keywords: epimorphism, monomorphism, pro-homotopy, shape, proper homotopy

Jerzy Dydak 1 ; Francisco Romero Ruiz del Portal 1

1
@article{10_4064_fm_160_3_269_286,
     author = {Jerzy Dydak and Francisco Romero Ruiz del Portal},
     title = {Bimorphisms in pro-homotopy and proper homotopy},
     journal = {Fundamenta Mathematicae},
     pages = {269--286},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {1999},
     doi = {10.4064/fm-160-3-269-286},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-269-286/}
}
TY  - JOUR
AU  - Jerzy Dydak
AU  - Francisco Romero Ruiz del Portal
TI  - Bimorphisms in pro-homotopy and proper homotopy
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 269
EP  - 286
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-269-286/
DO  - 10.4064/fm-160-3-269-286
LA  - en
ID  - 10_4064_fm_160_3_269_286
ER  - 
%0 Journal Article
%A Jerzy Dydak
%A Francisco Romero Ruiz del Portal
%T Bimorphisms in pro-homotopy and proper homotopy
%J Fundamenta Mathematicae
%D 1999
%P 269-286
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-269-286/
%R 10.4064/fm-160-3-269-286
%G en
%F 10_4064_fm_160_3_269_286
Jerzy Dydak; Francisco Romero Ruiz del Portal. Bimorphisms in pro-homotopy and proper homotopy. Fundamenta Mathematicae, Tome 160 (1999) no. 3, pp. 269-286. doi : 10.4064/fm-160-3-269-286. http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-269-286/

Cité par Sources :