Spaces of upper semicontinuous multi-valued functions on complete metric spaces
Fundamenta Mathematicae, Tome 160 (1999) no. 3, pp. 199-218.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X = (X,d) be a metric space and let the product space X × ℝ be endowed with the metric ϱ ((x,t),(x',t')) = max{d(x,x'), |t - t'|}. We denote by $USCC_B(X)$ the space of bounded upper semicontinuous multi-valued functions φ : X → ℝ such that each φ(x) is a closed interval. We identify $φ ∈ USCC_B(X)$ with its graph which is a closed subset of X × ℝ. The space $USCC_B(X)$ admits the Hausdorff metric induced by ϱ. It is proved that if X = (X,d) is uniformly locally connected, non-compact and complete, then $USCC_B(X)$ is homeomorphic to a non-separable Hilbert space. In case X is separable, it is homeomorphic to $ℓ_2(2^ℕ)$.
DOI : 10.4064/fm-160-3-199-218
Keywords: space of upper semicontinuous multi-valued functions, hyperspace of non-empty closed sets, Hausdorff metric, Hilbert space, uniformly locally connected

Katsuro Sakai 1 ; Shigenori Uehara 1

1
@article{10_4064_fm_160_3_199_218,
     author = {Katsuro Sakai and Shigenori Uehara},
     title = {Spaces of upper semicontinuous multi-valued functions on complete metric spaces},
     journal = {Fundamenta Mathematicae},
     pages = {199--218},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {1999},
     doi = {10.4064/fm-160-3-199-218},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-199-218/}
}
TY  - JOUR
AU  - Katsuro Sakai
AU  - Shigenori Uehara
TI  - Spaces of upper semicontinuous multi-valued functions on complete metric spaces
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 199
EP  - 218
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-199-218/
DO  - 10.4064/fm-160-3-199-218
LA  - en
ID  - 10_4064_fm_160_3_199_218
ER  - 
%0 Journal Article
%A Katsuro Sakai
%A Shigenori Uehara
%T Spaces of upper semicontinuous multi-valued functions on complete metric spaces
%J Fundamenta Mathematicae
%D 1999
%P 199-218
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-199-218/
%R 10.4064/fm-160-3-199-218
%G en
%F 10_4064_fm_160_3_199_218
Katsuro Sakai; Shigenori Uehara. Spaces of upper semicontinuous multi-valued functions on complete metric spaces. Fundamenta Mathematicae, Tome 160 (1999) no. 3, pp. 199-218. doi : 10.4064/fm-160-3-199-218. http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-199-218/

Cité par Sources :