Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval
Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 161-181
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The topological entropy of a nonautonomous dynamical system given by a sequence of compact metric spaces $(X_i)^∞_{i = 1}$ and a sequence of continuous maps $(f_i)^∞_{i = 1}$, $f_i : X_i → X_{i+1}$, is defined. If all the spaces are compact real intervals and all the maps are piecewise monotone then, under some additional assumptions, a formula for the entropy of the system is obtained in terms of the number of pieces of monotonicity of $f_n ○... ○ f_2 ○ f_1$. As an application we construct a large class of smooth triangular maps of the square of type $2^∞$ and positive topological entropy.
Keywords:
nonautonomous dynamical system, topological entropy, triangular maps, piecewise monotone maps, $C^∞$ maps
Affiliations des auteurs :
Sergiĭ Kolyada 1 ; Michał Misiurewicz 1 ; L’ubomír Snoha 1
@article{10_4064_fm_160_2_161_181,
author = {Sergi\u{i} Kolyada and Micha{\l} Misiurewicz and L{\textquoteright}ubom{\'\i}r Snoha},
title = {Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval},
journal = {Fundamenta Mathematicae},
pages = {161--181},
publisher = {mathdoc},
volume = {160},
number = {2},
year = {1999},
doi = {10.4064/fm-160-2-161-181},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-161-181/}
}
TY - JOUR AU - Sergiĭ Kolyada AU - Michał Misiurewicz AU - L’ubomír Snoha TI - Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval JO - Fundamenta Mathematicae PY - 1999 SP - 161 EP - 181 VL - 160 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-161-181/ DO - 10.4064/fm-160-2-161-181 LA - en ID - 10_4064_fm_160_2_161_181 ER -
%0 Journal Article %A Sergiĭ Kolyada %A Michał Misiurewicz %A L’ubomír Snoha %T Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval %J Fundamenta Mathematicae %D 1999 %P 161-181 %V 160 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-161-181/ %R 10.4064/fm-160-2-161-181 %G en %F 10_4064_fm_160_2_161_181
Sergiĭ Kolyada; Michał Misiurewicz; L’ubomír Snoha. Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval. Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 161-181. doi: 10.4064/fm-160-2-161-181
Cité par Sources :