Multiplicative operations in the Steenrod algebra for Brown–Peterson cohomology
Fundamenta Mathematicae, Tome 160 (1999) no. 1, pp. 81-93.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A family of multiplicative operations in the BP Steenrod algebra is defined which is related to the total Steenrod power operation from the mod p Steenrod algebra. The main result of the paper links the BP versions of the total Steenrod power with the formal group approach to multiplicative BP operations by identifying the p-typical curves (power series) which correspond to these operations. Some relations are derived from this identification, and a short proof of the Hopf invariant one theorem is given as a sample computation.
DOI : 10.4064/fm-160-1-81-93

Michael Slack 1

1
@article{10_4064_fm_160_1_81_93,
     author = {Michael Slack},
     title = {Multiplicative operations in the {Steenrod} algebra for {Brown{\textendash}Peterson} cohomology},
     journal = {Fundamenta Mathematicae},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {1999},
     doi = {10.4064/fm-160-1-81-93},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-81-93/}
}
TY  - JOUR
AU  - Michael Slack
TI  - Multiplicative operations in the Steenrod algebra for Brown–Peterson cohomology
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 81
EP  - 93
VL  - 160
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-81-93/
DO  - 10.4064/fm-160-1-81-93
LA  - en
ID  - 10_4064_fm_160_1_81_93
ER  - 
%0 Journal Article
%A Michael Slack
%T Multiplicative operations in the Steenrod algebra for Brown–Peterson cohomology
%J Fundamenta Mathematicae
%D 1999
%P 81-93
%V 160
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-81-93/
%R 10.4064/fm-160-1-81-93
%G en
%F 10_4064_fm_160_1_81_93
Michael Slack. Multiplicative operations in the Steenrod algebra for Brown–Peterson cohomology. Fundamenta Mathematicae, Tome 160 (1999) no. 1, pp. 81-93. doi : 10.4064/fm-160-1-81-93. http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-81-93/

Cité par Sources :