On Whitney pairs
Fundamenta Mathematicae, Tome 160 (1999) no. 1, pp. 63-79.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A simple arc ϕ is said to be a Whitney arc if there exists a non-constant function f such that   $lim_{x ↦ x_0} (|f(x)-f(x_0)|)/(|ϕ(x)-ϕ(x_0)|) = 0$ for every $x_0$. G. Petruska raised the question whether there exists a simple arc ϕ for which every subarc is a Whitney arc, but for which there is no parametrization satisfying   $lim_{t ↦ t_0} (|t-t_0|)/(|ϕ(t)-ϕ(t_0)|) = 0$. We answer this question partially, and study the structural properties of possible monotone, strictly monotone and VBG* functions f and associated Whitney arcs.
DOI : 10.4064/fm-160-1-63-79

Marianna Csörnyei 1

1
@article{10_4064_fm_160_1_63_79,
     author = {Marianna Cs\"ornyei},
     title = {On {Whitney} pairs},
     journal = {Fundamenta Mathematicae},
     pages = {63--79},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {1999},
     doi = {10.4064/fm-160-1-63-79},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-63-79/}
}
TY  - JOUR
AU  - Marianna Csörnyei
TI  - On Whitney pairs
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 63
EP  - 79
VL  - 160
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-63-79/
DO  - 10.4064/fm-160-1-63-79
LA  - en
ID  - 10_4064_fm_160_1_63_79
ER  - 
%0 Journal Article
%A Marianna Csörnyei
%T On Whitney pairs
%J Fundamenta Mathematicae
%D 1999
%P 63-79
%V 160
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-63-79/
%R 10.4064/fm-160-1-63-79
%G en
%F 10_4064_fm_160_1_63_79
Marianna Csörnyei. On Whitney pairs. Fundamenta Mathematicae, Tome 160 (1999) no. 1, pp. 63-79. doi : 10.4064/fm-160-1-63-79. http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-63-79/

Cité par Sources :