A partition theorem for α-large sets
Fundamenta Mathematicae, Tome 160 (1999) no. 1, pp. 27-37.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Working with Hardy hierarchy and the notion of largeness determined by it, we define the notion of a partition of a finite set of natural numbers $A=∪_{i
DOI : 10.4064/fm-160-1-27-37

Teresa Bigorajska 1 ; Henryk Kotlarski 1

1
@article{10_4064_fm_160_1_27_37,
     author = {Teresa Bigorajska and Henryk Kotlarski},
     title = {A partition theorem for \ensuremath{\alpha}-large sets},
     journal = {Fundamenta Mathematicae},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {1999},
     doi = {10.4064/fm-160-1-27-37},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-27-37/}
}
TY  - JOUR
AU  - Teresa Bigorajska
AU  - Henryk Kotlarski
TI  - A partition theorem for α-large sets
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 27
EP  - 37
VL  - 160
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-27-37/
DO  - 10.4064/fm-160-1-27-37
LA  - en
ID  - 10_4064_fm_160_1_27_37
ER  - 
%0 Journal Article
%A Teresa Bigorajska
%A Henryk Kotlarski
%T A partition theorem for α-large sets
%J Fundamenta Mathematicae
%D 1999
%P 27-37
%V 160
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-27-37/
%R 10.4064/fm-160-1-27-37
%G en
%F 10_4064_fm_160_1_27_37
Teresa Bigorajska; Henryk Kotlarski. A partition theorem for α-large sets. Fundamenta Mathematicae, Tome 160 (1999) no. 1, pp. 27-37. doi : 10.4064/fm-160-1-27-37. http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-27-37/

Cité par Sources :