A partition theorem for α-large sets
Fundamenta Mathematicae, Tome 160 (1999) no. 1, pp. 27-37
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Working with Hardy hierarchy and the notion of largeness determined by it, we define the notion of a partition of a finite set of natural numbers $A=∪_{i
Affiliations des auteurs :
Teresa Bigorajska 1 ; Henryk Kotlarski 1
@article{10_4064_fm_160_1_27_37,
author = {Teresa Bigorajska and Henryk Kotlarski},
title = {A partition theorem for \ensuremath{\alpha}-large sets},
journal = {Fundamenta Mathematicae},
pages = {27--37},
year = {1999},
volume = {160},
number = {1},
doi = {10.4064/fm-160-1-27-37},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-27-37/}
}
TY - JOUR AU - Teresa Bigorajska AU - Henryk Kotlarski TI - A partition theorem for α-large sets JO - Fundamenta Mathematicae PY - 1999 SP - 27 EP - 37 VL - 160 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-1-27-37/ DO - 10.4064/fm-160-1-27-37 LA - en ID - 10_4064_fm_160_1_27_37 ER -
Teresa Bigorajska; Henryk Kotlarski. A partition theorem for α-large sets. Fundamenta Mathematicae, Tome 160 (1999) no. 1, pp. 27-37. doi: 10.4064/fm-160-1-27-37
Cité par Sources :