A note on Tsirelson type ideals
Fundamenta Mathematicae, Tome 159 (1999) no. 3, pp. 259-268
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Using Tsirelson's well-known example of a Banach space which does not contain a copy of $c_0$ or $l_p$, for p ≥ 1, we construct a simple Borel ideal $I_T$ such that the Borel cardinalities of the quotient spaces $P(ℕ)/I_T$ and $P(ℕ)/I_0$ are incomparable, where $I_0$ is the summable ideal of all sets A ⊆ ℕ such that $∑ _{n ∈ A}1/(n+1) ∞$. This disproves a "trichotomy'' conjecture for Borel ideals proposed by Kechris and Mazur.
@article{10_4064_fm_159_3_259_268,
author = {Boban Veli\v{c}kovi\'c},
title = {A note on {Tsirelson} type ideals},
journal = {Fundamenta Mathematicae},
pages = {259--268},
publisher = {mathdoc},
volume = {159},
number = {3},
year = {1999},
doi = {10.4064/fm-159-3-259-268},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-3-259-268/}
}
Boban Veličković. A note on Tsirelson type ideals. Fundamenta Mathematicae, Tome 159 (1999) no. 3, pp. 259-268. doi: 10.4064/fm-159-3-259-268
Cité par Sources :