Ordered fields and the ultrafilter theorem
Fundamenta Mathematicae, Tome 159 (1999) no. 3, pp. 231-241
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that on the basis of ZF the ultrafilter theorem and the theorem of Artin-Schreier are equivalent. The latter says that every formally real field admits a total order.
@article{10_4064_fm_159_3_231_241,
author = {R. Berr and F. Delon and J. Schmid},
title = {Ordered fields and the ultrafilter theorem},
journal = {Fundamenta Mathematicae},
pages = {231--241},
year = {1999},
volume = {159},
number = {3},
doi = {10.4064/fm-159-3-231-241},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-3-231-241/}
}
TY - JOUR AU - R. Berr AU - F. Delon AU - J. Schmid TI - Ordered fields and the ultrafilter theorem JO - Fundamenta Mathematicae PY - 1999 SP - 231 EP - 241 VL - 159 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-159-3-231-241/ DO - 10.4064/fm-159-3-231-241 LA - en ID - 10_4064_fm_159_3_231_241 ER -
R. Berr; F. Delon; J. Schmid. Ordered fields and the ultrafilter theorem. Fundamenta Mathematicae, Tome 159 (1999) no. 3, pp. 231-241. doi: 10.4064/fm-159-3-231-241
Cité par Sources :