Ordered fields and the ultrafilter theorem
Fundamenta Mathematicae, Tome 159 (1999) no. 3, pp. 231-241.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that on the basis of ZF the ultrafilter theorem and the theorem of Artin-Schreier are equivalent. The latter says that every formally real field admits a total order.
DOI : 10.4064/fm-159-3-231-241

R. Berr 1 ; F. Delon 1 ; J. Schmid 1

1
@article{10_4064_fm_159_3_231_241,
     author = {R. Berr and F. Delon and J. Schmid},
     title = {Ordered fields and the ultrafilter theorem},
     journal = {Fundamenta Mathematicae},
     pages = {231--241},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {1999},
     doi = {10.4064/fm-159-3-231-241},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-3-231-241/}
}
TY  - JOUR
AU  - R. Berr
AU  - F. Delon
AU  - J. Schmid
TI  - Ordered fields and the ultrafilter theorem
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 231
EP  - 241
VL  - 159
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-159-3-231-241/
DO  - 10.4064/fm-159-3-231-241
LA  - en
ID  - 10_4064_fm_159_3_231_241
ER  - 
%0 Journal Article
%A R. Berr
%A F. Delon
%A J. Schmid
%T Ordered fields and the ultrafilter theorem
%J Fundamenta Mathematicae
%D 1999
%P 231-241
%V 159
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-159-3-231-241/
%R 10.4064/fm-159-3-231-241
%G en
%F 10_4064_fm_159_3_231_241
R. Berr; F. Delon; J. Schmid. Ordered fields and the ultrafilter theorem. Fundamenta Mathematicae, Tome 159 (1999) no. 3, pp. 231-241. doi : 10.4064/fm-159-3-231-241. http://geodesic.mathdoc.fr/articles/10.4064/fm-159-3-231-241/

Cité par Sources :