A forcing construction of thin-tall Boolean algebras
Fundamenta Mathematicae, Tome 159 (1999) no. 2, pp. 99-113
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It was proved by Juhász and Weiss that for every ordinal α with ${0 α ω_2}$ there is a superatomic Boolean algebra of height α and width ω. We prove that if κ is an infinite cardinal such that $κ^{ κ} = κ$ and α is an ordinal such that $0 α κ^{++}$, then there is a cardinal-preserving partial order that forces the existence of a superatomic Boolean algebra of height α and width κ. Furthermore, iterating this forcing through all $α κ^{++}$, we obtain a notion of forcing that preserves cardinals and such that in the corresponding generic extension there is a superatomic Boolean algebra of height α and width κ for every $α κ^{++}$. Consistency for specific κ, like $ω_1$, then follows as a corollary.
@article{10_4064_fm_159_2_99_113,
author = {Juan Carlos Mart{\'\i}nez},
title = {A forcing construction of thin-tall {Boolean} algebras},
journal = {Fundamenta Mathematicae},
pages = {99--113},
year = {1999},
volume = {159},
number = {2},
doi = {10.4064/fm-159-2-99-113},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-99-113/}
}
TY - JOUR AU - Juan Carlos Martínez TI - A forcing construction of thin-tall Boolean algebras JO - Fundamenta Mathematicae PY - 1999 SP - 99 EP - 113 VL - 159 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-99-113/ DO - 10.4064/fm-159-2-99-113 LA - en ID - 10_4064_fm_159_2_99_113 ER -
Juan Carlos Martínez. A forcing construction of thin-tall Boolean algebras. Fundamenta Mathematicae, Tome 159 (1999) no. 2, pp. 99-113. doi: 10.4064/fm-159-2-99-113
Cité par Sources :