On a question of Sierpiński
Fundamenta Mathematicae, Tome 159 (1999) no. 2, pp. 153-159.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

There is a set U of reals such that for every analytic set A there is a continuous function f which maps U bijectively to A.
DOI : 10.4064/fm-159-2-153-159
Mots-clés : Borel set, analytic set

Theodore Slaman 1

1
@article{10_4064_fm_159_2_153_159,
     author = {Theodore Slaman},
     title = {On a question of {Sierpi\'nski}},
     journal = {Fundamenta Mathematicae},
     pages = {153--159},
     publisher = {mathdoc},
     volume = {159},
     number = {2},
     year = {1999},
     doi = {10.4064/fm-159-2-153-159},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-153-159/}
}
TY  - JOUR
AU  - Theodore Slaman
TI  - On a question of Sierpiński
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 153
EP  - 159
VL  - 159
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-153-159/
DO  - 10.4064/fm-159-2-153-159
LA  - pl
ID  - 10_4064_fm_159_2_153_159
ER  - 
%0 Journal Article
%A Theodore Slaman
%T On a question of Sierpiński
%J Fundamenta Mathematicae
%D 1999
%P 153-159
%V 159
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-153-159/
%R 10.4064/fm-159-2-153-159
%G pl
%F 10_4064_fm_159_2_153_159
Theodore Slaman. On a question of Sierpiński. Fundamenta Mathematicae, Tome 159 (1999) no. 2, pp. 153-159. doi : 10.4064/fm-159-2-153-159. http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-153-159/

Cité par Sources :