Hopfian and strongly hopfian manifolds
Fundamenta Mathematicae, Tome 159 (1999) no. 2, pp. 127-134
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let p: M → B be a proper surjective map defined on an (n+2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C' and C' ∖ O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) ≠ 0 or $H_1(N) ≅ ℤ_2$
@article{10_4064_fm_159_2_127_134,
author = {Young Ho Im and Yongkuk Kim},
title = {Hopfian and strongly hopfian manifolds},
journal = {Fundamenta Mathematicae},
pages = {127--134},
year = {1999},
volume = {159},
number = {2},
doi = {10.4064/fm-159-2-127-134},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-127-134/}
}
TY - JOUR AU - Young Ho Im AU - Yongkuk Kim TI - Hopfian and strongly hopfian manifolds JO - Fundamenta Mathematicae PY - 1999 SP - 127 EP - 134 VL - 159 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-127-134/ DO - 10.4064/fm-159-2-127-134 LA - en ID - 10_4064_fm_159_2_127_134 ER -
Young Ho Im; Yongkuk Kim. Hopfian and strongly hopfian manifolds. Fundamenta Mathematicae, Tome 159 (1999) no. 2, pp. 127-134. doi: 10.4064/fm-159-2-127-134
Cité par Sources :