Hopfian and strongly hopfian manifolds
Fundamenta Mathematicae, Tome 159 (1999) no. 2, pp. 127-134.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let p: M → B be a proper surjective map defined on an (n+2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C' and C' ∖ O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) ≠ 0 or $H_1(N) ≅ ℤ_2$
DOI : 10.4064/fm-159-2-127-134

Young Ho Im 1 ; Yongkuk Kim 1

1
@article{10_4064_fm_159_2_127_134,
     author = {Young Ho Im and Yongkuk Kim},
     title = {Hopfian and strongly hopfian manifolds},
     journal = {Fundamenta Mathematicae},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {159},
     number = {2},
     year = {1999},
     doi = {10.4064/fm-159-2-127-134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-127-134/}
}
TY  - JOUR
AU  - Young Ho Im
AU  - Yongkuk Kim
TI  - Hopfian and strongly hopfian manifolds
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 127
EP  - 134
VL  - 159
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-127-134/
DO  - 10.4064/fm-159-2-127-134
LA  - en
ID  - 10_4064_fm_159_2_127_134
ER  - 
%0 Journal Article
%A Young Ho Im
%A Yongkuk Kim
%T Hopfian and strongly hopfian manifolds
%J Fundamenta Mathematicae
%D 1999
%P 127-134
%V 159
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-127-134/
%R 10.4064/fm-159-2-127-134
%G en
%F 10_4064_fm_159_2_127_134
Young Ho Im; Yongkuk Kim. Hopfian and strongly hopfian manifolds. Fundamenta Mathematicae, Tome 159 (1999) no. 2, pp. 127-134. doi : 10.4064/fm-159-2-127-134. http://geodesic.mathdoc.fr/articles/10.4064/fm-159-2-127-134/

Cité par Sources :