The Gaussian measure on algebraic varieties
Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 91-98.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety $M⊂ℝ^n$ is dense in the Hilbert space $L^2(M,e^{-|x|^2}dμ)$, where dμ denotes the volume form of M and $dν = e^{-|x|^2}dμ$ the Gaussian measure on M.
DOI : 10.4064/fm-159-1-91-98
Keywords: Gaussian measure, algebraic variety

Ilka Agricola 1 ; Thomas Friedrich 1

1
@article{10_4064_fm_159_1_91_98,
     author = {Ilka Agricola and Thomas Friedrich},
     title = {The {Gaussian} measure on algebraic varieties},
     journal = {Fundamenta Mathematicae},
     pages = {91--98},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {1999},
     doi = {10.4064/fm-159-1-91-98},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-91-98/}
}
TY  - JOUR
AU  - Ilka Agricola
AU  - Thomas Friedrich
TI  - The Gaussian measure on algebraic varieties
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 91
EP  - 98
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-91-98/
DO  - 10.4064/fm-159-1-91-98
LA  - en
ID  - 10_4064_fm_159_1_91_98
ER  - 
%0 Journal Article
%A Ilka Agricola
%A Thomas Friedrich
%T The Gaussian measure on algebraic varieties
%J Fundamenta Mathematicae
%D 1999
%P 91-98
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-91-98/
%R 10.4064/fm-159-1-91-98
%G en
%F 10_4064_fm_159_1_91_98
Ilka Agricola; Thomas Friedrich. The Gaussian measure on algebraic varieties. Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 91-98. doi : 10.4064/fm-159-1-91-98. http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-91-98/

Cité par Sources :