The Gaussian measure on algebraic varieties
Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 91-98
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety $M⊂ℝ^n$ is dense in the Hilbert space $L^2(M,e^{-|x|^2}dμ)$, where dμ denotes the volume form of M and $dν = e^{-|x|^2}dμ$ the Gaussian measure on M.
Keywords:
Gaussian measure, algebraic variety
Affiliations des auteurs :
Ilka Agricola 1 ; Thomas Friedrich 1
@article{10_4064_fm_159_1_91_98,
author = {Ilka Agricola and Thomas Friedrich},
title = {The {Gaussian} measure on algebraic varieties},
journal = {Fundamenta Mathematicae},
pages = {91--98},
year = {1999},
volume = {159},
number = {1},
doi = {10.4064/fm-159-1-91-98},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-91-98/}
}
TY - JOUR AU - Ilka Agricola AU - Thomas Friedrich TI - The Gaussian measure on algebraic varieties JO - Fundamenta Mathematicae PY - 1999 SP - 91 EP - 98 VL - 159 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-91-98/ DO - 10.4064/fm-159-1-91-98 LA - en ID - 10_4064_fm_159_1_91_98 ER -
Ilka Agricola; Thomas Friedrich. The Gaussian measure on algebraic varieties. Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 91-98. doi: 10.4064/fm-159-1-91-98
Cité par Sources :