Ordered spaces with special bases
Fundamenta Mathematicae, Tome 158 (1998) no. 3, pp. 289-299.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the roles played by four special types of bases (weakly uniform bases, ω-in-ω bases, open-in-finite bases, and sharp bases) in the classes of linearly ordered and generalized ordered spaces. For example, we show that a generalized ordered space has a weakly uniform base if and only if it is quasi-developable and has a $G_δ$-diagonal, that a linearly ordered space has a point-countable base if and only if it is first-countable and has an ω-in-ω base, and that metrizability in a generalized ordered space is equivalent to the existence of an OIF base and to the existence of a sharp base. We give examples showing that these are the best possible results.
DOI : 10.4064/fm-158-3-289-299
Keywords: point-countable base, weakly uniform base, ω-in-ω base, open-in-finite base, sharp base, metrizable space, quasi-developable space, linearly ordered space, generalized ordered space

Harold Bennett 1 ; David Lutzer 1

1
@article{10_4064_fm_158_3_289_299,
     author = {Harold Bennett and David Lutzer},
     title = {Ordered spaces with special bases},
     journal = {Fundamenta Mathematicae},
     pages = {289--299},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {1998},
     doi = {10.4064/fm-158-3-289-299},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-289-299/}
}
TY  - JOUR
AU  - Harold Bennett
AU  - David Lutzer
TI  - Ordered spaces with special bases
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 289
EP  - 299
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-289-299/
DO  - 10.4064/fm-158-3-289-299
LA  - en
ID  - 10_4064_fm_158_3_289_299
ER  - 
%0 Journal Article
%A Harold Bennett
%A David Lutzer
%T Ordered spaces with special bases
%J Fundamenta Mathematicae
%D 1998
%P 289-299
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-289-299/
%R 10.4064/fm-158-3-289-299
%G en
%F 10_4064_fm_158_3_289_299
Harold Bennett; David Lutzer. Ordered spaces with special bases. Fundamenta Mathematicae, Tome 158 (1998) no. 3, pp. 289-299. doi : 10.4064/fm-158-3-289-299. http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-289-299/

Cité par Sources :