Ordered spaces with special bases
Fundamenta Mathematicae, Tome 158 (1998) no. 3, pp. 289-299
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the roles played by four special types of bases (weakly uniform bases, ω-in-ω bases, open-in-finite bases, and sharp bases) in the classes of linearly ordered and generalized ordered spaces. For example, we show that a generalized ordered space has a weakly uniform base if and only if it is quasi-developable and has a $G_δ$-diagonal, that a linearly ordered space has a point-countable base if and only if it is first-countable and has an ω-in-ω base, and that metrizability in a generalized ordered space is equivalent to the existence of an OIF base and to the existence of a sharp base. We give examples showing that these are the best possible results.
Keywords:
point-countable base, weakly uniform base, ω-in-ω base, open-in-finite base, sharp base, metrizable space, quasi-developable space, linearly ordered space, generalized ordered space
Affiliations des auteurs :
Harold Bennett 1 ; David Lutzer 1
@article{10_4064_fm_158_3_289_299,
author = {Harold Bennett and David Lutzer},
title = {Ordered spaces with special bases},
journal = {Fundamenta Mathematicae},
pages = {289--299},
publisher = {mathdoc},
volume = {158},
number = {3},
year = {1998},
doi = {10.4064/fm-158-3-289-299},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-289-299/}
}
TY - JOUR AU - Harold Bennett AU - David Lutzer TI - Ordered spaces with special bases JO - Fundamenta Mathematicae PY - 1998 SP - 289 EP - 299 VL - 158 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-289-299/ DO - 10.4064/fm-158-3-289-299 LA - en ID - 10_4064_fm_158_3_289_299 ER -
Harold Bennett; David Lutzer. Ordered spaces with special bases. Fundamenta Mathematicae, Tome 158 (1998) no. 3, pp. 289-299. doi: 10.4064/fm-158-3-289-299
Cité par Sources :