From Newton’s method to exotic basins Part I: The parameter space
Fundamenta Mathematicae, Tome 158 (1998) no. 3, pp. 249-288.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This is the first part of the work studying the family $\mathfrak{F}$ of all rational maps of degree three with two superattracting fixed points. We determine the topological type of the moduli space of $\mathfrak{F}$ and give a detailed study of the subfamily $ℱ_2$ consisting of maps with a critical point which is periodic of period 2. In particular, we describe a parabolic bifurcation in $ℱ_2$ from Newton maps to maps with so-called exotic basins.
DOI : 10.4064/fm-158-3-249-288

Krzysztof Barański 1

1
@article{10_4064_fm_158_3_249_288,
     author = {Krzysztof Bara\'nski},
     title = {From {Newton{\textquoteright}s} method to exotic basins {Part} {I:} {The} parameter space},
     journal = {Fundamenta Mathematicae},
     pages = {249--288},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {1998},
     doi = {10.4064/fm-158-3-249-288},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-249-288/}
}
TY  - JOUR
AU  - Krzysztof Barański
TI  - From Newton’s method to exotic basins Part I: The parameter space
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 249
EP  - 288
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-249-288/
DO  - 10.4064/fm-158-3-249-288
LA  - en
ID  - 10_4064_fm_158_3_249_288
ER  - 
%0 Journal Article
%A Krzysztof Barański
%T From Newton’s method to exotic basins Part I: The parameter space
%J Fundamenta Mathematicae
%D 1998
%P 249-288
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-249-288/
%R 10.4064/fm-158-3-249-288
%G en
%F 10_4064_fm_158_3_249_288
Krzysztof Barański. From Newton’s method to exotic basins Part I: The parameter space. Fundamenta Mathematicae, Tome 158 (1998) no. 3, pp. 249-288. doi : 10.4064/fm-158-3-249-288. http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-249-288/

Cité par Sources :