Almost disjoint families and property (a)
Fundamenta Mathematicae, Tome 158 (1998) no. 3, pp. 229-240.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the question: when does a Ψ-space satisfy property (a)? We show that if $|A| \got p$ then the Ψ-space Ψ(A) satisfies property (a), but in some Cohen models the negation of CH holds and every uncountable Ψ-space fails to satisfy property (a). We also show that in a model of Fleissner and Miller there exists a Ψ-space of cardinality $\got p$ which has property (a). We extend a theorem of Matveev relating the existence of certain closed discrete subsets with the failure of property (a).
DOI : 10.4064/fm-158-3-229-240
Keywords: property (a), density, extent, almost disjoint families, Ψ-space, CH, GCH, Martin's Axiom, $\got p = \got c$, Cohen forcing, Q-set, weakly inaccessible cardinal.

Paul J. Szeptycki 1 ; Jerry E. Vaughan 1

1
@article{10_4064_fm_158_3_229_240,
     author = {Paul J. Szeptycki and Jerry E. Vaughan},
     title = {Almost disjoint families and property (a)},
     journal = {Fundamenta Mathematicae},
     pages = {229--240},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {1998},
     doi = {10.4064/fm-158-3-229-240},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-229-240/}
}
TY  - JOUR
AU  - Paul J. Szeptycki
AU  - Jerry E. Vaughan
TI  - Almost disjoint families and property (a)
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 229
EP  - 240
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-229-240/
DO  - 10.4064/fm-158-3-229-240
LA  - en
ID  - 10_4064_fm_158_3_229_240
ER  - 
%0 Journal Article
%A Paul J. Szeptycki
%A Jerry E. Vaughan
%T Almost disjoint families and property (a)
%J Fundamenta Mathematicae
%D 1998
%P 229-240
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-229-240/
%R 10.4064/fm-158-3-229-240
%G en
%F 10_4064_fm_158_3_229_240
Paul J. Szeptycki; Jerry E. Vaughan. Almost disjoint families and property (a). Fundamenta Mathematicae, Tome 158 (1998) no. 3, pp. 229-240. doi : 10.4064/fm-158-3-229-240. http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-229-240/

Cité par Sources :