Almost disjoint families and property (a)
Fundamenta Mathematicae, Tome 158 (1998) no. 3, pp. 229-240
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the question: when does a Ψ-space satisfy property (a)? We show that if $|A| \got p$ then the Ψ-space Ψ(A) satisfies property (a), but in some Cohen models the negation of CH holds and every uncountable Ψ-space fails to satisfy property (a). We also show that in a model of Fleissner and Miller there exists a Ψ-space of cardinality $\got p$ which has property (a). We extend a theorem of Matveev relating the existence of certain closed discrete subsets with the failure of property (a).
Keywords:
property (a), density, extent, almost disjoint families, Ψ-space, CH, GCH, Martin's Axiom, $\got p = \got c$, Cohen forcing, Q-set, weakly inaccessible cardinal.
Affiliations des auteurs :
Paul J. Szeptycki 1 ; Jerry E. Vaughan 1
@article{10_4064_fm_158_3_229_240,
author = {Paul J. Szeptycki and Jerry E. Vaughan},
title = {Almost disjoint families and property (a)},
journal = {Fundamenta Mathematicae},
pages = {229--240},
year = {1998},
volume = {158},
number = {3},
doi = {10.4064/fm-158-3-229-240},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-229-240/}
}
TY - JOUR AU - Paul J. Szeptycki AU - Jerry E. Vaughan TI - Almost disjoint families and property (a) JO - Fundamenta Mathematicae PY - 1998 SP - 229 EP - 240 VL - 158 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-158-3-229-240/ DO - 10.4064/fm-158-3-229-240 LA - en ID - 10_4064_fm_158_3_229_240 ER -
Paul J. Szeptycki; Jerry E. Vaughan. Almost disjoint families and property (a). Fundamenta Mathematicae, Tome 158 (1998) no. 3, pp. 229-240. doi: 10.4064/fm-158-3-229-240
Cité par Sources :