Algebraic characterization of finite (branched) coverings
Fundamenta Mathematicae, Tome 158 (1998) no. 2, pp. 165-180.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Every continuous map X → S defines, by composition, a homomorphism between the corresponding algebras of real-valued continuous functions C(S) → C(X). This paper deals with algebraic properties of the homomorphism C(S) → C(X) in relation to topological properties of the map X → S. The main result of the paper states that a continuous map X → S between topological manifolds is a finite (branched) covering, i.e., an open and closed map whose fibres are finite, if and only if the induced homomorphism C(S) → C(X) is integral and flat.
DOI : 10.4064/fm-158-2-165-180
Keywords: branched covering, open and closed map, ring of continuous functions, flat homomorphism, integral homomorphism

M. A. Mulero 1

1
@article{10_4064_fm_158_2_165_180,
     author = {M. A. Mulero},
     title = {Algebraic characterization of finite (branched) coverings},
     journal = {Fundamenta Mathematicae},
     pages = {165--180},
     publisher = {mathdoc},
     volume = {158},
     number = {2},
     year = {1998},
     doi = {10.4064/fm-158-2-165-180},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-165-180/}
}
TY  - JOUR
AU  - M. A. Mulero
TI  - Algebraic characterization of finite (branched) coverings
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 165
EP  - 180
VL  - 158
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-165-180/
DO  - 10.4064/fm-158-2-165-180
LA  - en
ID  - 10_4064_fm_158_2_165_180
ER  - 
%0 Journal Article
%A M. A. Mulero
%T Algebraic characterization of finite (branched) coverings
%J Fundamenta Mathematicae
%D 1998
%P 165-180
%V 158
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-165-180/
%R 10.4064/fm-158-2-165-180
%G en
%F 10_4064_fm_158_2_165_180
M. A. Mulero. Algebraic characterization of finite (branched) coverings. Fundamenta Mathematicae, Tome 158 (1998) no. 2, pp. 165-180. doi : 10.4064/fm-158-2-165-180. http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-165-180/

Cité par Sources :