Decomposition of group-valued measures on orthoalgebras
Fundamenta Mathematicae, Tome 158 (1998) no. 2, pp. 109-124.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a general decomposition theorem for a positive inner regular finitely additive measure on an orthoalgebra $L$ with values in an ordered topological group $G$, not necessarily commutative. In the case where L is a Boolean algebra, we establish the uniqueness of such a decomposition. With mild extra hypotheses on $G$, we extend this Boolean decomposition, preserving the uniqueness, to the case where the measure is order bounded instead of being positive. This last result generalizes A. D. Aleksandrov's classical decomposition theorem.
DOI : 10.4064/fm-158-2-109-124

Paolo De Lucia 1 ; Pedro Morales 1

1
@article{10_4064_fm_158_2_109_124,
     author = {Paolo De Lucia and Pedro Morales},
     title = {Decomposition of group-valued measures on orthoalgebras},
     journal = {Fundamenta Mathematicae},
     pages = {109--124},
     publisher = {mathdoc},
     volume = {158},
     number = {2},
     year = {1998},
     doi = {10.4064/fm-158-2-109-124},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-109-124/}
}
TY  - JOUR
AU  - Paolo De Lucia
AU  - Pedro Morales
TI  - Decomposition of group-valued measures on orthoalgebras
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 109
EP  - 124
VL  - 158
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-109-124/
DO  - 10.4064/fm-158-2-109-124
LA  - en
ID  - 10_4064_fm_158_2_109_124
ER  - 
%0 Journal Article
%A Paolo De Lucia
%A Pedro Morales
%T Decomposition of group-valued measures on orthoalgebras
%J Fundamenta Mathematicae
%D 1998
%P 109-124
%V 158
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-109-124/
%R 10.4064/fm-158-2-109-124
%G en
%F 10_4064_fm_158_2_109_124
Paolo De Lucia; Pedro Morales. Decomposition of group-valued measures on orthoalgebras. Fundamenta Mathematicae, Tome 158 (1998) no. 2, pp. 109-124. doi : 10.4064/fm-158-2-109-124. http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-109-124/

Cité par Sources :