The distributivity numbers of finite products of $\mathcal P(ω)/{\rm fin}$
Fundamenta Mathematicae, Tome 158 (1998) no. 1, pp. 81-93.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Generalizing [ShSp], for every n ω we construct a ZFC-model where ℌ(n), the distributivity number of r.o.$(P(ω)/fin)^n$, is greater than ℌ(n+1). This answers an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver and Miller forcings collapse the continuum to ℌ(n) for every n ω, hence by the first result, consistently they collapse it below ℌ(n).
DOI : 10.4064/fm-158-1-81-93

Saharon Shelah 1 ; Otmar Spinas 1

1
@article{10_4064_fm_158_1_81_93,
     author = {Saharon Shelah and Otmar Spinas},
     title = {The distributivity numbers of finite products of $\mathcal P(\ensuremath{\omega})/{\rm fin}$},
     journal = {Fundamenta Mathematicae},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {158},
     number = {1},
     year = {1998},
     doi = {10.4064/fm-158-1-81-93},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-158-1-81-93/}
}
TY  - JOUR
AU  - Saharon Shelah
AU  - Otmar Spinas
TI  - The distributivity numbers of finite products of $\mathcal P(ω)/{\rm fin}$
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 81
EP  - 93
VL  - 158
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-158-1-81-93/
DO  - 10.4064/fm-158-1-81-93
LA  - en
ID  - 10_4064_fm_158_1_81_93
ER  - 
%0 Journal Article
%A Saharon Shelah
%A Otmar Spinas
%T The distributivity numbers of finite products of $\mathcal P(ω)/{\rm fin}$
%J Fundamenta Mathematicae
%D 1998
%P 81-93
%V 158
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-158-1-81-93/
%R 10.4064/fm-158-1-81-93
%G en
%F 10_4064_fm_158_1_81_93
Saharon Shelah; Otmar Spinas. The distributivity numbers of finite products of $\mathcal P(ω)/{\rm fin}$. Fundamenta Mathematicae, Tome 158 (1998) no. 1, pp. 81-93. doi : 10.4064/fm-158-1-81-93. http://geodesic.mathdoc.fr/articles/10.4064/fm-158-1-81-93/

Cité par Sources :