The distributivity numbers of finite products of $\mathcal P(ω)/{\rm fin}$
Fundamenta Mathematicae, Tome 158 (1998) no. 1, pp. 81-93
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Generalizing [ShSp], for every n ω we construct a ZFC-model where ℌ(n), the distributivity number of r.o.$(P(ω)/fin)^n$, is greater than ℌ(n+1). This answers an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver and Miller forcings collapse the continuum to ℌ(n) for every n ω, hence by the first result, consistently they collapse it below ℌ(n).
Affiliations des auteurs :
Saharon Shelah 1 ; Otmar Spinas 1
@article{10_4064_fm_158_1_81_93,
author = {Saharon Shelah and Otmar Spinas},
title = {The distributivity numbers of finite products of $\mathcal P(\ensuremath{\omega})/{\rm fin}$},
journal = {Fundamenta Mathematicae},
pages = {81--93},
publisher = {mathdoc},
volume = {158},
number = {1},
year = {1998},
doi = {10.4064/fm-158-1-81-93},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-158-1-81-93/}
}
TY - JOUR
AU - Saharon Shelah
AU - Otmar Spinas
TI - The distributivity numbers of finite products of $\mathcal P(ω)/{\rm fin}$
JO - Fundamenta Mathematicae
PY - 1998
SP - 81
EP - 93
VL - 158
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-158-1-81-93/
DO - 10.4064/fm-158-1-81-93
LA - en
ID - 10_4064_fm_158_1_81_93
ER -
%0 Journal Article
%A Saharon Shelah
%A Otmar Spinas
%T The distributivity numbers of finite products of $\mathcal P(ω)/{\rm fin}$
%J Fundamenta Mathematicae
%D 1998
%P 81-93
%V 158
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-158-1-81-93/
%R 10.4064/fm-158-1-81-93
%G en
%F 10_4064_fm_158_1_81_93
Saharon Shelah; Otmar Spinas. The distributivity numbers of finite products of $\mathcal P(ω)/{\rm fin}$. Fundamenta Mathematicae, Tome 158 (1998) no. 1, pp. 81-93. doi: 10.4064/fm-158-1-81-93
Cité par Sources :