Ergodicity for piecewise smooth cocycles over toral rotations
Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 235-244.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let α be an ergodic rotation of the d-torus $\mathbb{T}^d = ℝ^d/ℤ^d$. For any piecewise smooth function $f: \mathbb{T}^d → ℝ$ with sufficiently regular pieces the unitary operator Vh(x) = exp(2π if(x))h(x + α) acting on $L^2(\mathbb{T}^d)$ is shown to have a continuous non-Dirichlet spectrum if the gradient of f has nonzero integral. In particular, the resulting skew product $S_f: \mathbb{T}^{d+1} → \mathbb{T}^{d+1}$ must be ergodic. If in addition α is sufficiently well approximated by rational vectors and f is represented by a linear function with noninteger coefficients then the spectrum of V is singular. In the case d = 1 our technique allows us to extend Pask's result on ergodicity of cylinder flows on T×ℝ to arbitrary piecewise absolutely continuous real-valued cocycles f satisfying ʃf = 0 and ʃf' ≠ 0.
DOI : 10.4064/fm-157-2-3-235-244

A. Iwanik 1

1
@article{10_4064_fm_157_2_3_235_244,
     author = {A. Iwanik},
     title = {Ergodicity for piecewise smooth cocycles over toral rotations},
     journal = {Fundamenta Mathematicae},
     pages = {235--244},
     publisher = {mathdoc},
     volume = {157},
     number = {2},
     year = {1998},
     doi = {10.4064/fm-157-2-3-235-244},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-235-244/}
}
TY  - JOUR
AU  - A. Iwanik
TI  - Ergodicity for piecewise smooth cocycles over toral rotations
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 235
EP  - 244
VL  - 157
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-235-244/
DO  - 10.4064/fm-157-2-3-235-244
LA  - en
ID  - 10_4064_fm_157_2_3_235_244
ER  - 
%0 Journal Article
%A A. Iwanik
%T Ergodicity for piecewise smooth cocycles over toral rotations
%J Fundamenta Mathematicae
%D 1998
%P 235-244
%V 157
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-235-244/
%R 10.4064/fm-157-2-3-235-244
%G en
%F 10_4064_fm_157_2_3_235_244
A. Iwanik. Ergodicity for piecewise smooth cocycles over toral rotations. Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 235-244. doi : 10.4064/fm-157-2-3-235-244. http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-235-244/

Cité par Sources :