Ergodicity for piecewise smooth cocycles over toral rotations
Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 235-244
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let α be an ergodic rotation of the d-torus $\mathbb{T}^d = ℝ^d/ℤ^d$. For any piecewise smooth function $f: \mathbb{T}^d → ℝ$ with sufficiently regular pieces the unitary operator Vh(x) = exp(2π if(x))h(x + α) acting on $L^2(\mathbb{T}^d)$ is shown to have a continuous non-Dirichlet spectrum if the gradient of f has nonzero integral. In particular, the resulting skew product $S_f: \mathbb{T}^{d+1} → \mathbb{T}^{d+1}$ must be ergodic. If in addition α is sufficiently well approximated by rational vectors and f is represented by a linear function with noninteger coefficients then the spectrum of V is singular. In the case d = 1 our technique allows us to extend Pask's result on ergodicity of cylinder flows on T×ℝ to arbitrary piecewise absolutely continuous real-valued cocycles f satisfying ʃf = 0 and ʃf' ≠ 0.
@article{10_4064_fm_157_2_3_235_244,
author = {A. Iwanik},
title = {Ergodicity for piecewise smooth cocycles over toral rotations},
journal = {Fundamenta Mathematicae},
pages = {235--244},
year = {1998},
volume = {157},
number = {2},
doi = {10.4064/fm-157-2-3-235-244},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-235-244/}
}
TY - JOUR AU - A. Iwanik TI - Ergodicity for piecewise smooth cocycles over toral rotations JO - Fundamenta Mathematicae PY - 1998 SP - 235 EP - 244 VL - 157 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-235-244/ DO - 10.4064/fm-157-2-3-235-244 LA - en ID - 10_4064_fm_157_2_3_235_244 ER -
A. Iwanik. Ergodicity for piecewise smooth cocycles over toral rotations. Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 235-244. doi: 10.4064/fm-157-2-3-235-244
Cité par Sources :