An entropy for $ℤ^2$ -actions with finite entropy generators
Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 209-220
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study a definition of entropy for $ℤ^+ × ℤ^+$-actions (or $ℤ^2$-actions) due to S. Friedland. Unlike the more traditional definition, this is better suited for actions whose generators have finite entropy as single transformations. We compute its value in several examples. In particular, we settle a conjecture of Friedland [2].
Affiliations des auteurs :
W. Geller 1 ; M. Pollicott 1
@article{10_4064_fm_157_2_3_209_220,
author = {W. Geller and M. Pollicott},
title = {An entropy for $\ensuremath{\mathbb{Z}}^2$ -actions with finite entropy generators},
journal = {Fundamenta Mathematicae},
pages = {209--220},
year = {1998},
volume = {157},
number = {2},
doi = {10.4064/fm-157-2-3-209-220},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-209-220/}
}
TY - JOUR AU - W. Geller AU - M. Pollicott TI - An entropy for $ℤ^2$ -actions with finite entropy generators JO - Fundamenta Mathematicae PY - 1998 SP - 209 EP - 220 VL - 157 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-209-220/ DO - 10.4064/fm-157-2-3-209-220 LA - en ID - 10_4064_fm_157_2_3_209_220 ER -
%0 Journal Article %A W. Geller %A M. Pollicott %T An entropy for $ℤ^2$ -actions with finite entropy generators %J Fundamenta Mathematicae %D 1998 %P 209-220 %V 157 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-209-220/ %R 10.4064/fm-157-2-3-209-220 %G en %F 10_4064_fm_157_2_3_209_220
W. Geller; M. Pollicott. An entropy for $ℤ^2$ -actions with finite entropy generators. Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 209-220. doi: 10.4064/fm-157-2-3-209-220
Cité par Sources :