An entropy for $ℤ^2$ -actions with finite entropy generators
Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 209-220.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study a definition of entropy for $ℤ^+ × ℤ^+$-actions (or $ℤ^2$-actions) due to S. Friedland. Unlike the more traditional definition, this is better suited for actions whose generators have finite entropy as single transformations. We compute its value in several examples. In particular, we settle a conjecture of Friedland [2].
DOI : 10.4064/fm-157-2-3-209-220

W. Geller 1 ; M. Pollicott 1

1
@article{10_4064_fm_157_2_3_209_220,
     author = {W. Geller and M. Pollicott},
     title = {An entropy for $\ensuremath{\mathbb{Z}}^2$ -actions with finite entropy generators},
     journal = {Fundamenta Mathematicae},
     pages = {209--220},
     publisher = {mathdoc},
     volume = {157},
     number = {2},
     year = {1998},
     doi = {10.4064/fm-157-2-3-209-220},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-209-220/}
}
TY  - JOUR
AU  - W. Geller
AU  - M. Pollicott
TI  - An entropy for $ℤ^2$ -actions with finite entropy generators
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 209
EP  - 220
VL  - 157
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-209-220/
DO  - 10.4064/fm-157-2-3-209-220
LA  - en
ID  - 10_4064_fm_157_2_3_209_220
ER  - 
%0 Journal Article
%A W. Geller
%A M. Pollicott
%T An entropy for $ℤ^2$ -actions with finite entropy generators
%J Fundamenta Mathematicae
%D 1998
%P 209-220
%V 157
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-209-220/
%R 10.4064/fm-157-2-3-209-220
%G en
%F 10_4064_fm_157_2_3_209_220
W. Geller; M. Pollicott. An entropy for $ℤ^2$ -actions with finite entropy generators. Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 209-220. doi : 10.4064/fm-157-2-3-209-220. http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-209-220/

Cité par Sources :