Jordan tori and polynomial endomorphisms in $ℂ^2$
Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 139-159.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a class of quadratic polynomial endomorphisms $f: ℂ^2 → ℂ^2$ close to the standard torus map $(x,y) → (x^2,y^2)$, we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).
DOI : 10.4064/fm-157-2-3-139-159

Manfred Denker 1 ; Stefan-M. Heinemann 1

1
@article{10_4064_fm_157_2_3_139_159,
     author = {Manfred Denker and Stefan-M. Heinemann},
     title = {Jordan tori and polynomial endomorphisms in $\ensuremath{\mathbb{C}}^2$},
     journal = {Fundamenta Mathematicae},
     pages = {139--159},
     publisher = {mathdoc},
     volume = {157},
     number = {2},
     year = {1998},
     doi = {10.4064/fm-157-2-3-139-159},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-139-159/}
}
TY  - JOUR
AU  - Manfred Denker
AU  - Stefan-M. Heinemann
TI  - Jordan tori and polynomial endomorphisms in $ℂ^2$
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 139
EP  - 159
VL  - 157
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-139-159/
DO  - 10.4064/fm-157-2-3-139-159
LA  - en
ID  - 10_4064_fm_157_2_3_139_159
ER  - 
%0 Journal Article
%A Manfred Denker
%A Stefan-M. Heinemann
%T Jordan tori and polynomial endomorphisms in $ℂ^2$
%J Fundamenta Mathematicae
%D 1998
%P 139-159
%V 157
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-139-159/
%R 10.4064/fm-157-2-3-139-159
%G en
%F 10_4064_fm_157_2_3_139_159
Manfred Denker; Stefan-M. Heinemann. Jordan tori and polynomial endomorphisms in $ℂ^2$. Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 139-159. doi : 10.4064/fm-157-2-3-139-159. http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-139-159/

Cité par Sources :