The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$
Fundamenta Mathematicae, Tome 157 (1998) no. 1, pp. 33-41.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Two compact spaces are co-absolute} if their respective regular open algebras are isomorphic (i.e. homeomorphic Gleason covers). We prove that it is consistent that βω\ω and βℝ\ℝ are not co-absolute.
DOI : 10.4064/fm-157-1-33-41

Alan Dow 1

1
@article{10_4064_fm_157_1_33_41,
     author = {Alan Dow},
     title = {The regular open algebra of $\ensuremath{\beta}\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(\ensuremath{\omega})/{\rm fin}$},
     journal = {Fundamenta Mathematicae},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {157},
     number = {1},
     year = {1998},
     doi = {10.4064/fm-157-1-33-41},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/}
}
TY  - JOUR
AU  - Alan Dow
TI  - The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 33
EP  - 41
VL  - 157
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/
DO  - 10.4064/fm-157-1-33-41
LA  - en
ID  - 10_4064_fm_157_1_33_41
ER  - 
%0 Journal Article
%A Alan Dow
%T The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$
%J Fundamenta Mathematicae
%D 1998
%P 33-41
%V 157
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/
%R 10.4064/fm-157-1-33-41
%G en
%F 10_4064_fm_157_1_33_41
Alan Dow. The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$. Fundamenta Mathematicae, Tome 157 (1998) no. 1, pp. 33-41. doi : 10.4064/fm-157-1-33-41. http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/

Cité par Sources :