Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_157_1_33_41, author = {Alan Dow}, title = {The regular open algebra of $\ensuremath{\beta}\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(\ensuremath{\omega})/{\rm fin}$}, journal = {Fundamenta Mathematicae}, pages = {33--41}, publisher = {mathdoc}, volume = {157}, number = {1}, year = {1998}, doi = {10.4064/fm-157-1-33-41}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/} }
TY - JOUR AU - Alan Dow TI - The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$ JO - Fundamenta Mathematicae PY - 1998 SP - 33 EP - 41 VL - 157 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/ DO - 10.4064/fm-157-1-33-41 LA - en ID - 10_4064_fm_157_1_33_41 ER -
%0 Journal Article %A Alan Dow %T The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$ %J Fundamenta Mathematicae %D 1998 %P 33-41 %V 157 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/ %R 10.4064/fm-157-1-33-41 %G en %F 10_4064_fm_157_1_33_41
Alan Dow. The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$. Fundamenta Mathematicae, Tome 157 (1998) no. 1, pp. 33-41. doi : 10.4064/fm-157-1-33-41. http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/
Cité par Sources :