The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$
Fundamenta Mathematicae, Tome 157 (1998) no. 1, pp. 33-41
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Two compact spaces are co-absolute} if their respective regular open algebras are isomorphic (i.e. homeomorphic Gleason covers). We prove that it is consistent that βω\ω and βℝ\ℝ are not co-absolute.
@article{10_4064_fm_157_1_33_41,
author = {Alan Dow},
title = {The regular open algebra of $\ensuremath{\beta}\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(\ensuremath{\omega})/{\rm fin}$},
journal = {Fundamenta Mathematicae},
pages = {33--41},
year = {1998},
volume = {157},
number = {1},
doi = {10.4064/fm-157-1-33-41},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/}
}
TY - JOUR
AU - Alan Dow
TI - The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$
JO - Fundamenta Mathematicae
PY - 1998
SP - 33
EP - 41
VL - 157
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/
DO - 10.4064/fm-157-1-33-41
LA - en
ID - 10_4064_fm_157_1_33_41
ER -
%0 Journal Article
%A Alan Dow
%T The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$
%J Fundamenta Mathematicae
%D 1998
%P 33-41
%V 157
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-33-41/
%R 10.4064/fm-157-1-33-41
%G en
%F 10_4064_fm_157_1_33_41
Alan Dow. The regular open algebra of $β\mathbb R\setminus\mathbb R$ is not equal to the completion of $\mathcal P(ω)/{\rm fin}$. Fundamenta Mathematicae, Tome 157 (1998) no. 1, pp. 33-41. doi: 10.4064/fm-157-1-33-41
Cité par Sources :