Difference functions of periodic measurable functions
Fundamenta Mathematicae, Tome 157 (1998) no. 1, pp. 15-32.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate some problems of the following type: For which sets H is it true that if f is in a given class ℱ of periodic functions and the difference functions $Δ_h f(x)=f(x+h)-f(x)$ are in a given smaller class G for every h ∈ H then f itself must be in G? Denoting the class of counter-example sets by ℌ(ℱ,G), that is, $ℌ(ℱ,G) = {H ⊂ ℝ/ℤ : (∃f ∈ ℱ \ G) (∀ h ∈ H) Δ_h f ∈ G}$, we try to characterize ℌ(ℱ,G) for some interesting classes of functions ℱ ⊃ G. We study classes of measurable functions on the circle group $\mathbb{T}=ℝ/ℤ$ that are invariant for changes on null-sets (e.g. measurable functions, $L_p$, $L_∞$, essentially continuous functions, functions with absolute convergent Fourier series (ACF*), essentially Lipschitz functions) and classes of continuous functions on $\mathbb{T}$ (e.g. continuous functions, continuous functions with absolute convergent Fourier series, Lipschitz functions). The classes ℌ(ℱ,G) are often related to some classes of thin sets in harmonic analysis (e.g. $ℌ(L_1,{ACF}*)$ is the class of N-sets). Some results concerning the difference property and the weak difference property of these classes of functions are also obtained.
DOI : 10.4064/fm-157-1-15-32

Tamás Keleti 1

1
@article{10_4064_fm_157_1_15_32,
     author = {Tam\'as Keleti},
     title = {Difference functions of periodic measurable functions},
     journal = {Fundamenta Mathematicae},
     pages = {15--32},
     publisher = {mathdoc},
     volume = {157},
     number = {1},
     year = {1998},
     doi = {10.4064/fm-157-1-15-32},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-15-32/}
}
TY  - JOUR
AU  - Tamás Keleti
TI  - Difference functions of periodic measurable functions
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 15
EP  - 32
VL  - 157
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-15-32/
DO  - 10.4064/fm-157-1-15-32
LA  - en
ID  - 10_4064_fm_157_1_15_32
ER  - 
%0 Journal Article
%A Tamás Keleti
%T Difference functions of periodic measurable functions
%J Fundamenta Mathematicae
%D 1998
%P 15-32
%V 157
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-15-32/
%R 10.4064/fm-157-1-15-32
%G en
%F 10_4064_fm_157_1_15_32
Tamás Keleti. Difference functions of periodic measurable functions. Fundamenta Mathematicae, Tome 157 (1998) no. 1, pp. 15-32. doi : 10.4064/fm-157-1-15-32. http://geodesic.mathdoc.fr/articles/10.4064/fm-157-1-15-32/

Cité par Sources :