Strongly meager sets and subsets of the plane
Fundamenta Mathematicae, Tome 156 (1998) no. 3, pp. 279-287.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X ⊆ 2^w$. Consider the class of all Borel $F ⊆ X×2^w$ with null vertical sections $F_x$, x ∈ X. We show that if for all such F and all null Z ⊆ X, $∪_{x ∈ Z}F_x$ is null, then for all such F, $∪_{x ∈ X}F_x≠2^w$. The theorem generalizes the fact that every Sierpiński set is strongly meager and was announced in [P].
DOI : 10.4064/fm-156-3-279-287

Janusz Pawlikowski 1

1
@article{10_4064_fm_156_3_279_287,
     author = {Janusz Pawlikowski},
     title = {Strongly meager sets and subsets of the plane},
     journal = {Fundamenta Mathematicae},
     pages = {279--287},
     publisher = {mathdoc},
     volume = {156},
     number = {3},
     year = {1998},
     doi = {10.4064/fm-156-3-279-287},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-3-279-287/}
}
TY  - JOUR
AU  - Janusz Pawlikowski
TI  - Strongly meager sets and subsets of the plane
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 279
EP  - 287
VL  - 156
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-156-3-279-287/
DO  - 10.4064/fm-156-3-279-287
LA  - en
ID  - 10_4064_fm_156_3_279_287
ER  - 
%0 Journal Article
%A Janusz Pawlikowski
%T Strongly meager sets and subsets of the plane
%J Fundamenta Mathematicae
%D 1998
%P 279-287
%V 156
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-156-3-279-287/
%R 10.4064/fm-156-3-279-287
%G en
%F 10_4064_fm_156_3_279_287
Janusz Pawlikowski. Strongly meager sets and subsets of the plane. Fundamenta Mathematicae, Tome 156 (1998) no. 3, pp. 279-287. doi : 10.4064/fm-156-3-279-287. http://geodesic.mathdoc.fr/articles/10.4064/fm-156-3-279-287/

Cité par Sources :