Strongly meager sets and subsets of the plane
Fundamenta Mathematicae, Tome 156 (1998) no. 3, pp. 279-287
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X ⊆ 2^w$. Consider the class of all Borel $F ⊆ X×2^w$ with null vertical sections $F_x$, x ∈ X. We show that if for all such F and all null Z ⊆ X, $∪_{x ∈ Z}F_x$ is null, then for all such F, $∪_{x ∈ X}F_x≠2^w$. The theorem generalizes the fact that every Sierpiński set is strongly meager and was announced in [P].
@article{10_4064_fm_156_3_279_287,
author = {Janusz Pawlikowski},
title = {Strongly meager sets and subsets of the plane},
journal = {Fundamenta Mathematicae},
pages = {279--287},
year = {1998},
volume = {156},
number = {3},
doi = {10.4064/fm-156-3-279-287},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-3-279-287/}
}
Janusz Pawlikowski. Strongly meager sets and subsets of the plane. Fundamenta Mathematicae, Tome 156 (1998) no. 3, pp. 279-287. doi: 10.4064/fm-156-3-279-287
Cité par Sources :