Endomorphism algebras over large domains
Fundamenta Mathematicae, Tome 156 (1998) no. 3, pp. 211-240
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The paper deals with realizations of R-algebras A as endomorphism algebras End G ≅ A of suitable R-modules G over a commutative ring R. We are mainly interested in the case of R having "many prime ideals", such as R = ℝ[x], the ring of real polynomials, or R a non-discrete valuation domain
Affiliations des auteurs :
Rüdiger Göbel 1 ; Simone Pabst 1
@article{10_4064_fm_156_3_211_240,
author = {R\"udiger G\"obel and Simone Pabst},
title = {Endomorphism algebras over large domains},
journal = {Fundamenta Mathematicae},
pages = {211--240},
year = {1998},
volume = {156},
number = {3},
doi = {10.4064/fm-156-3-211-240},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-3-211-240/}
}
TY - JOUR AU - Rüdiger Göbel AU - Simone Pabst TI - Endomorphism algebras over large domains JO - Fundamenta Mathematicae PY - 1998 SP - 211 EP - 240 VL - 156 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-156-3-211-240/ DO - 10.4064/fm-156-3-211-240 LA - fr ID - 10_4064_fm_156_3_211_240 ER -
Rüdiger Göbel; Simone Pabst. Endomorphism algebras over large domains. Fundamenta Mathematicae, Tome 156 (1998) no. 3, pp. 211-240. doi: 10.4064/fm-156-3-211-240
Cité par Sources :