On Pettis integral and Radon measures
Fundamenta Mathematicae, Tome 156 (1998) no. 2, pp. 183-195
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Assuming the continuum hypothesis, we construct a universally weakly measurable function from [0,1] into a dual of some weakly compactly generated Banach space, which is not Pettis integrable. This (partially) solves a problem posed by Riddle, Saab and Uhl [13]. We prove two results related to Pettis integration in dual Banach spaces. We also contribute to the problem whether it is consistent that every bounded function which is weakly measurable with respect to some Radon measure is Pettis integrable.
@article{10_4064_fm_156_2_183_195,
     author = {Grzegorz Plebanek},
     title = {On {Pettis} integral and {Radon} measures},
     journal = {Fundamenta Mathematicae},
     pages = {183--195},
     year = {1998},
     volume = {156},
     number = {2},
     doi = {10.4064/fm-156-2-183-195},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-2-183-195/}
}
TY  - JOUR
AU  - Grzegorz Plebanek
TI  - On Pettis integral and Radon measures
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 183
EP  - 195
VL  - 156
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-156-2-183-195/
DO  - 10.4064/fm-156-2-183-195
LA  - en
ID  - 10_4064_fm_156_2_183_195
ER  - 
%0 Journal Article
%A Grzegorz Plebanek
%T On Pettis integral and Radon measures
%J Fundamenta Mathematicae
%D 1998
%P 183-195
%V 156
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-156-2-183-195/
%R 10.4064/fm-156-2-183-195
%G en
%F 10_4064_fm_156_2_183_195
Grzegorz Plebanek. On Pettis integral and Radon measures. Fundamenta Mathematicae, Tome 156 (1998) no. 2, pp. 183-195. doi: 10.4064/fm-156-2-183-195

Cité par Sources :