On Pettis integral and Radon measures
Fundamenta Mathematicae, Tome 156 (1998) no. 2, pp. 183-195
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Assuming the continuum hypothesis, we construct a universally weakly measurable function from [0,1] into a dual of some weakly compactly generated Banach space, which is not Pettis integrable. This (partially) solves a problem posed by Riddle, Saab and Uhl [13]. We prove two results related to Pettis integration in dual Banach spaces. We also contribute to the problem whether it is consistent that every bounded function which is weakly measurable with respect to some Radon measure is Pettis integrable.
@article{10_4064_fm_156_2_183_195,
author = {Grzegorz Plebanek},
title = {On {Pettis} integral and {Radon} measures},
journal = {Fundamenta Mathematicae},
pages = {183--195},
publisher = {mathdoc},
volume = {156},
number = {2},
year = {1998},
doi = {10.4064/fm-156-2-183-195},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-2-183-195/}
}
TY - JOUR AU - Grzegorz Plebanek TI - On Pettis integral and Radon measures JO - Fundamenta Mathematicae PY - 1998 SP - 183 EP - 195 VL - 156 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-156-2-183-195/ DO - 10.4064/fm-156-2-183-195 LA - en ID - 10_4064_fm_156_2_183_195 ER -
Grzegorz Plebanek. On Pettis integral and Radon measures. Fundamenta Mathematicae, Tome 156 (1998) no. 2, pp. 183-195. doi: 10.4064/fm-156-2-183-195
Cité par Sources :