On nonstructure of elementary submodels of a stable homogeneous structure
Fundamenta Mathematicae, Tome 156 (1998) no. 2, pp. 167-182
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We assume that M is a stable homogeneous model of large cardinality. We prove a nonstructure theorem for (slightly saturated) elementary submodels of M, assuming M has dop. We do not assume that th(M) is stable.
@article{10_4064_fm_156_2_167_182,
author = {Tapani Hyttinen},
title = {On nonstructure of elementary submodels of a stable homogeneous structure},
journal = {Fundamenta Mathematicae},
pages = {167--182},
year = {1998},
volume = {156},
number = {2},
doi = {10.4064/fm-156-2-167-182},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-2-167-182/}
}
TY - JOUR AU - Tapani Hyttinen TI - On nonstructure of elementary submodels of a stable homogeneous structure JO - Fundamenta Mathematicae PY - 1998 SP - 167 EP - 182 VL - 156 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-156-2-167-182/ DO - 10.4064/fm-156-2-167-182 LA - en ID - 10_4064_fm_156_2_167_182 ER -
Tapani Hyttinen. On nonstructure of elementary submodels of a stable homogeneous structure. Fundamenta Mathematicae, Tome 156 (1998) no. 2, pp. 167-182. doi: 10.4064/fm-156-2-167-182
Cité par Sources :