Dominating analytic families
Fundamenta Mathematicae, Tome 156 (1998) no. 1, pp. 73-83
Let A be an analytic family of sequences of sets of integers. We show that either A is dominated or it contains a continuum of almost disjoint sequences. From this we obtain a theorem by Shelah that a Suslin c.c.c. forcing adds a Cohen real if it adds an unbounded real.
Keywords:
measure algebra, Cohen algebra, Suslin c.c.c. forcing, distributivity
@article{10_4064_fm_156_1_73_83,
author = {Anastasis Kamburelis},
title = {Dominating analytic families},
journal = {Fundamenta Mathematicae},
pages = {73--83},
year = {1998},
volume = {156},
number = {1},
doi = {10.4064/fm-156-1-73-83},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-73-83/}
}
Anastasis Kamburelis. Dominating analytic families. Fundamenta Mathematicae, Tome 156 (1998) no. 1, pp. 73-83. doi: 10.4064/fm-156-1-73-83
Cité par Sources :