Hyperconvexity of ℝ-trees
Fundamenta Mathematicae, Tome 156 (1998) no. 1, pp. 67-72.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that for a metric space (M,d) the following are equivalent: (i) M is a complete ℝ-tree; (ii) M is hyperconvex and has unique metric segments.
DOI : 10.4064/fm-156-1-67-72
Keywords: hyperconvex metric space, ℝ-tree, fixed point, nonexpansive mapping

W. A. Kirk 1

1
@article{10_4064_fm_156_1_67_72,
     author = {W. A. Kirk},
     title = {Hyperconvexity of {\ensuremath{\mathbb{R}}-trees}},
     journal = {Fundamenta Mathematicae},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {156},
     number = {1},
     year = {1998},
     doi = {10.4064/fm-156-1-67-72},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-67-72/}
}
TY  - JOUR
AU  - W. A. Kirk
TI  - Hyperconvexity of ℝ-trees
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 67
EP  - 72
VL  - 156
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-67-72/
DO  - 10.4064/fm-156-1-67-72
LA  - en
ID  - 10_4064_fm_156_1_67_72
ER  - 
%0 Journal Article
%A W. A. Kirk
%T Hyperconvexity of ℝ-trees
%J Fundamenta Mathematicae
%D 1998
%P 67-72
%V 156
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-67-72/
%R 10.4064/fm-156-1-67-72
%G en
%F 10_4064_fm_156_1_67_72
W. A. Kirk. Hyperconvexity of ℝ-trees. Fundamenta Mathematicae, Tome 156 (1998) no. 1, pp. 67-72. doi : 10.4064/fm-156-1-67-72. http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-67-72/

Cité par Sources :