Hyperconvexity of ℝ-trees
Fundamenta Mathematicae, Tome 156 (1998) no. 1, pp. 67-72
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that for a metric space (M,d) the following are equivalent: (i) M is a complete ℝ-tree; (ii) M is hyperconvex and has unique metric segments.
Keywords:
hyperconvex metric space, ℝ-tree, fixed point, nonexpansive mapping
Affiliations des auteurs :
W. A. Kirk 1
@article{10_4064_fm_156_1_67_72,
author = {W. A. Kirk},
title = {Hyperconvexity of {\ensuremath{\mathbb{R}}-trees}},
journal = {Fundamenta Mathematicae},
pages = {67--72},
publisher = {mathdoc},
volume = {156},
number = {1},
year = {1998},
doi = {10.4064/fm-156-1-67-72},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-67-72/}
}
W. A. Kirk. Hyperconvexity of ℝ-trees. Fundamenta Mathematicae, Tome 156 (1998) no. 1, pp. 67-72. doi: 10.4064/fm-156-1-67-72
Cité par Sources :