X-minimal patterns and a generalization of Sharkovskiĭ's theorem
Fundamenta Mathematicae, Tome 156 (1998) no. 1, pp. 33-66.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the law of coexistence of different types of cycles for a continuous map of the interval. For this we introduce the notion of eccentricity of a pattern and characterize those patterns with a given eccentricity that are simplest from the point of view of the forcing relation. We call these patterns X-minimal. We obtain a generalization of Sharkovskiĭ's Theorem where the notion of period is replaced by the notion of eccentricity.
DOI : 10.4064/fm-156-1-33-66
Keywords: iteration, periodic orbit, cycle, pattern, minimal, forcing relation, Sharkovskiĭ s theorem

Jozef Bobok 1 ; Milan Kuchta 1

1
@article{10_4064_fm_156_1_33_66,
     author = {Jozef Bobok and Milan Kuchta},
     title = {X-minimal patterns and a generalization of {Sharkovski\u{i}'s} theorem},
     journal = {Fundamenta Mathematicae},
     pages = {33--66},
     publisher = {mathdoc},
     volume = {156},
     number = {1},
     year = {1998},
     doi = {10.4064/fm-156-1-33-66},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-33-66/}
}
TY  - JOUR
AU  - Jozef Bobok
AU  - Milan Kuchta
TI  - X-minimal patterns and a generalization of Sharkovskiĭ's theorem
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 33
EP  - 66
VL  - 156
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-33-66/
DO  - 10.4064/fm-156-1-33-66
LA  - en
ID  - 10_4064_fm_156_1_33_66
ER  - 
%0 Journal Article
%A Jozef Bobok
%A Milan Kuchta
%T X-minimal patterns and a generalization of Sharkovskiĭ's theorem
%J Fundamenta Mathematicae
%D 1998
%P 33-66
%V 156
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-33-66/
%R 10.4064/fm-156-1-33-66
%G en
%F 10_4064_fm_156_1_33_66
Jozef Bobok; Milan Kuchta. X-minimal patterns and a generalization of Sharkovskiĭ's theorem. Fundamenta Mathematicae, Tome 156 (1998) no. 1, pp. 33-66. doi : 10.4064/fm-156-1-33-66. http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-33-66/

Cité par Sources :