X-minimal patterns and a generalization of Sharkovskiĭ's theorem
Fundamenta Mathematicae, Tome 156 (1998) no. 1, pp. 33-66
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the law of coexistence of different types of cycles for a continuous map of the interval. For this we introduce the notion of eccentricity of a pattern and characterize those patterns with a given eccentricity that are simplest from the point of view of the forcing relation. We call these patterns X-minimal. We obtain a generalization of Sharkovskiĭ's Theorem where the notion of period is replaced by the notion of eccentricity.
Keywords:
iteration, periodic orbit, cycle, pattern, minimal, forcing relation, Sharkovskiĭ s theorem
Affiliations des auteurs :
Jozef Bobok 1 ; Milan Kuchta 1
@article{10_4064_fm_156_1_33_66,
author = {Jozef Bobok and Milan Kuchta},
title = {X-minimal patterns and a generalization of {Sharkovski\u{i}'s} theorem},
journal = {Fundamenta Mathematicae},
pages = {33--66},
year = {1998},
volume = {156},
number = {1},
doi = {10.4064/fm-156-1-33-66},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-33-66/}
}
TY - JOUR AU - Jozef Bobok AU - Milan Kuchta TI - X-minimal patterns and a generalization of Sharkovskiĭ's theorem JO - Fundamenta Mathematicae PY - 1998 SP - 33 EP - 66 VL - 156 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-156-1-33-66/ DO - 10.4064/fm-156-1-33-66 LA - en ID - 10_4064_fm_156_1_33_66 ER -
Jozef Bobok; Milan Kuchta. X-minimal patterns and a generalization of Sharkovskiĭ's theorem. Fundamenta Mathematicae, Tome 156 (1998) no. 1, pp. 33-66. doi: 10.4064/fm-156-1-33-66
Cité par Sources :