When a partial Borel order is linearizable
Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 301-309.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-155-3-301-309

Vladimir Kanovei 1

1
@article{10_4064_fm_155_3_301_309,
     author = {Vladimir Kanovei},
     title = {When a partial {Borel} order is linearizable},
     journal = {Fundamenta Mathematicae},
     pages = {301--309},
     publisher = {mathdoc},
     volume = {155},
     number = {3},
     year = {1998},
     doi = {10.4064/fm-155-3-301-309},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-301-309/}
}
TY  - JOUR
AU  - Vladimir Kanovei
TI  - When a partial Borel order is linearizable
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 301
EP  - 309
VL  - 155
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-301-309/
DO  - 10.4064/fm-155-3-301-309
LA  - en
ID  - 10_4064_fm_155_3_301_309
ER  - 
%0 Journal Article
%A Vladimir Kanovei
%T When a partial Borel order is linearizable
%J Fundamenta Mathematicae
%D 1998
%P 301-309
%V 155
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-301-309/
%R 10.4064/fm-155-3-301-309
%G en
%F 10_4064_fm_155_3_301_309
Vladimir Kanovei. When a partial Borel order is linearizable. Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 301-309. doi : 10.4064/fm-155-3-301-309. http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-301-309/

Cité par Sources :