Modules commuting (via Hom) with some limits
Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 271-292.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For every module M we have a natural monomorphism  $Φ: ∐_{i ∈ I} Hom _R (A_i,M) → Hom _R (∏_{i ∈I} A_i, M)$ and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.
DOI : 10.4064/fm-155-3-271-292

Robert El Bashir 1 ; Tomáš Kepka 1

1
@article{10_4064_fm_155_3_271_292,
     author = {Robert El Bashir and Tom\'a\v{s} Kepka},
     title = {Modules commuting (via {Hom)} with some limits},
     journal = {Fundamenta Mathematicae},
     pages = {271--292},
     publisher = {mathdoc},
     volume = {155},
     number = {3},
     year = {1998},
     doi = {10.4064/fm-155-3-271-292},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-271-292/}
}
TY  - JOUR
AU  - Robert El Bashir
AU  - Tomáš Kepka
TI  - Modules commuting (via Hom) with some limits
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 271
EP  - 292
VL  - 155
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-271-292/
DO  - 10.4064/fm-155-3-271-292
LA  - en
ID  - 10_4064_fm_155_3_271_292
ER  - 
%0 Journal Article
%A Robert El Bashir
%A Tomáš Kepka
%T Modules commuting (via Hom) with some limits
%J Fundamenta Mathematicae
%D 1998
%P 271-292
%V 155
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-271-292/
%R 10.4064/fm-155-3-271-292
%G en
%F 10_4064_fm_155_3_271_292
Robert El Bashir; Tomáš Kepka. Modules commuting (via Hom) with some limits. Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 271-292. doi : 10.4064/fm-155-3-271-292. http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-271-292/

Cité par Sources :