Modules commuting (via Hom) with some limits
Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 271-292
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For every module M we have a natural monomorphism $Φ: ∐_{i ∈ I} Hom _R (A_i,M) → Hom _R (∏_{i ∈I} A_i, M)$ and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.
Affiliations des auteurs :
Robert El Bashir 1 ; Tomáš Kepka 1
@article{10_4064_fm_155_3_271_292,
author = {Robert El Bashir and Tom\'a\v{s} Kepka},
title = {Modules commuting (via {Hom)} with some limits},
journal = {Fundamenta Mathematicae},
pages = {271--292},
year = {1998},
volume = {155},
number = {3},
doi = {10.4064/fm-155-3-271-292},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-271-292/}
}
TY - JOUR AU - Robert El Bashir AU - Tomáš Kepka TI - Modules commuting (via Hom) with some limits JO - Fundamenta Mathematicae PY - 1998 SP - 271 EP - 292 VL - 155 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-271-292/ DO - 10.4064/fm-155-3-271-292 LA - en ID - 10_4064_fm_155_3_271_292 ER -
Robert El Bashir; Tomáš Kepka. Modules commuting (via Hom) with some limits. Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 271-292. doi: 10.4064/fm-155-3-271-292
Cité par Sources :