Period doubling, entropy, and renormalization
Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 237-249
We show that in any family of stunted sawtooth maps, the set of maps whose set of periods is the set of all powers of 2 has no interior point. Similar techniques then allow us to show that, under mild assumptions, smooth multimodal maps whose set of periods is the set of all powers of 2 are infinitely renormalizable with the diameters of all periodic intervals going to zero as the period goes to infinity.
@article{10_4064_fm_155_3_237_249,
author = {Jun Hu and Charles Tresser},
title = {Period doubling, entropy, and renormalization},
journal = {Fundamenta Mathematicae},
pages = {237--249},
year = {1998},
volume = {155},
number = {3},
doi = {10.4064/fm-155-3-237-249},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-237-249/}
}
TY - JOUR AU - Jun Hu AU - Charles Tresser TI - Period doubling, entropy, and renormalization JO - Fundamenta Mathematicae PY - 1998 SP - 237 EP - 249 VL - 155 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-237-249/ DO - 10.4064/fm-155-3-237-249 LA - en ID - 10_4064_fm_155_3_237_249 ER -
Jun Hu; Charles Tresser. Period doubling, entropy, and renormalization. Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 237-249. doi: 10.4064/fm-155-3-237-249
Cité par Sources :