Period doubling, entropy, and renormalization
Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 237-249.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that in any family of stunted sawtooth maps, the set of maps whose set of periods is the set of all powers of 2 has no interior point. Similar techniques then allow us to show that, under mild assumptions, smooth multimodal maps whose set of periods is the set of all powers of 2 are infinitely renormalizable with the diameters of all periodic intervals going to zero as the period goes to infinity.
DOI : 10.4064/fm-155-3-237-249

Jun Hu 1 ; Charles Tresser 1

1
@article{10_4064_fm_155_3_237_249,
     author = {Jun Hu and Charles Tresser},
     title = {Period doubling, entropy, and renormalization},
     journal = {Fundamenta Mathematicae},
     pages = {237--249},
     publisher = {mathdoc},
     volume = {155},
     number = {3},
     year = {1998},
     doi = {10.4064/fm-155-3-237-249},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-237-249/}
}
TY  - JOUR
AU  - Jun Hu
AU  - Charles Tresser
TI  - Period doubling, entropy, and renormalization
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 237
EP  - 249
VL  - 155
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-237-249/
DO  - 10.4064/fm-155-3-237-249
LA  - en
ID  - 10_4064_fm_155_3_237_249
ER  - 
%0 Journal Article
%A Jun Hu
%A Charles Tresser
%T Period doubling, entropy, and renormalization
%J Fundamenta Mathematicae
%D 1998
%P 237-249
%V 155
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-237-249/
%R 10.4064/fm-155-3-237-249
%G en
%F 10_4064_fm_155_3_237_249
Jun Hu; Charles Tresser. Period doubling, entropy, and renormalization. Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 237-249. doi : 10.4064/fm-155-3-237-249. http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-237-249/

Cité par Sources :