Period doubling, entropy, and renormalization
Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 237-249
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that in any family of stunted sawtooth maps, the set of maps whose set of periods is the set of all powers of 2 has no interior point. Similar techniques then allow us to show that, under mild assumptions, smooth multimodal maps whose set of periods is the set of all powers of 2 are infinitely renormalizable with the diameters of all periodic intervals going to zero as the period goes to infinity.
Affiliations des auteurs :
Jun Hu 1 ; Charles Tresser 1
@article{10_4064_fm_155_3_237_249,
author = {Jun Hu and Charles Tresser},
title = {Period doubling, entropy, and renormalization},
journal = {Fundamenta Mathematicae},
pages = {237--249},
year = {1998},
volume = {155},
number = {3},
doi = {10.4064/fm-155-3-237-249},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-237-249/}
}
TY - JOUR AU - Jun Hu AU - Charles Tresser TI - Period doubling, entropy, and renormalization JO - Fundamenta Mathematicae PY - 1998 SP - 237 EP - 249 VL - 155 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-237-249/ DO - 10.4064/fm-155-3-237-249 LA - en ID - 10_4064_fm_155_3_237_249 ER -
Jun Hu; Charles Tresser. Period doubling, entropy, and renormalization. Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 237-249. doi: 10.4064/fm-155-3-237-249
Cité par Sources :