For almost every tent map, the turning point is typical
Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 215-235
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $T_a$ be the tent map with slope a. Let c be its turning point, and $μ_a$ the absolutely continuous invariant probability measure. For an arbitrary, bounded, almost everywhere continuous function g, it is shown that for almost every a, $ʃ g dμ_a = lim_{n → ∞} \frac1n ∑_{i=0}^{n-1} g(T^i_a(c))$. As a corollary, we deduce that the critical point of a quadratic map is generically not typical for its absolutely continuous invariant probability measure, if it exists.
@article{10_4064_fm_155_3_215_235,
author = {Henk Bruin},
title = {For almost every tent map, the turning point is typical},
journal = {Fundamenta Mathematicae},
pages = {215--235},
publisher = {mathdoc},
volume = {155},
number = {3},
year = {1998},
doi = {10.4064/fm-155-3-215-235},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-215-235/}
}
TY - JOUR AU - Henk Bruin TI - For almost every tent map, the turning point is typical JO - Fundamenta Mathematicae PY - 1998 SP - 215 EP - 235 VL - 155 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-215-235/ DO - 10.4064/fm-155-3-215-235 LA - en ID - 10_4064_fm_155_3_215_235 ER -
Henk Bruin. For almost every tent map, the turning point is typical. Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 215-235. doi: 10.4064/fm-155-3-215-235
Cité par Sources :