For almost every tent map, the turning point is typical
Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 215-235.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T_a$ be the tent map with slope a. Let c be its turning point, and $μ_a$ the absolutely continuous invariant probability measure. For an arbitrary, bounded, almost everywhere continuous function g, it is shown that for almost every a, $ʃ g dμ_a = lim_{n → ∞} \frac1n ∑_{i=0}^{n-1} g(T^i_a(c))$. As a corollary, we deduce that the critical point of a quadratic map is generically not typical for its absolutely continuous invariant probability measure, if it exists.
DOI : 10.4064/fm-155-3-215-235

Henk Bruin 1

1
@article{10_4064_fm_155_3_215_235,
     author = {Henk Bruin},
     title = {For almost every tent map, the turning point is typical},
     journal = {Fundamenta Mathematicae},
     pages = {215--235},
     publisher = {mathdoc},
     volume = {155},
     number = {3},
     year = {1998},
     doi = {10.4064/fm-155-3-215-235},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-215-235/}
}
TY  - JOUR
AU  - Henk Bruin
TI  - For almost every tent map, the turning point is typical
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 215
EP  - 235
VL  - 155
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-215-235/
DO  - 10.4064/fm-155-3-215-235
LA  - en
ID  - 10_4064_fm_155_3_215_235
ER  - 
%0 Journal Article
%A Henk Bruin
%T For almost every tent map, the turning point is typical
%J Fundamenta Mathematicae
%D 1998
%P 215-235
%V 155
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-215-235/
%R 10.4064/fm-155-3-215-235
%G en
%F 10_4064_fm_155_3_215_235
Henk Bruin. For almost every tent map, the turning point is typical. Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 215-235. doi : 10.4064/fm-155-3-215-235. http://geodesic.mathdoc.fr/articles/10.4064/fm-155-3-215-235/

Cité par Sources :