Porosity of Collet–Eckmann Julia sets
Fundamenta Mathematicae, Tome 155 (1998) no. 2, pp. 189-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the Julia set of a rational map of the Riemann sphere satisfying the Collet-Eckmann condition and having no parabolic periodic point is mean porous, if it is not the whole sphere. It follows that the Minkowski dimension of the Julia set is less than 2.
DOI : 10.4064/fm-155-2-189-199

Feliks Przytycki 1 ; Steffen Rohde 1

1
@article{10_4064_fm_155_2_189_199,
     author = {Feliks Przytycki and Steffen Rohde},
     title = {Porosity of {Collet{\textendash}Eckmann} {Julia} sets},
     journal = {Fundamenta Mathematicae},
     pages = {189--199},
     publisher = {mathdoc},
     volume = {155},
     number = {2},
     year = {1998},
     doi = {10.4064/fm-155-2-189-199},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-2-189-199/}
}
TY  - JOUR
AU  - Feliks Przytycki
AU  - Steffen Rohde
TI  - Porosity of Collet–Eckmann Julia sets
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 189
EP  - 199
VL  - 155
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-2-189-199/
DO  - 10.4064/fm-155-2-189-199
LA  - en
ID  - 10_4064_fm_155_2_189_199
ER  - 
%0 Journal Article
%A Feliks Przytycki
%A Steffen Rohde
%T Porosity of Collet–Eckmann Julia sets
%J Fundamenta Mathematicae
%D 1998
%P 189-199
%V 155
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-2-189-199/
%R 10.4064/fm-155-2-189-199
%G en
%F 10_4064_fm_155_2_189_199
Feliks Przytycki; Steffen Rohde. Porosity of Collet–Eckmann Julia sets. Fundamenta Mathematicae, Tome 155 (1998) no. 2, pp. 189-199. doi : 10.4064/fm-155-2-189-199. http://geodesic.mathdoc.fr/articles/10.4064/fm-155-2-189-199/

Cité par Sources :