The fixed-point property for deformations of tree-like continua
Fundamenta Mathematicae, Tome 155 (1998) no. 2, pp. 161-176
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let f be a map of a tree-like continuum M that sends each arc-component of M into itself. We prove that f has a fixed point. Hence every tree-like continuum has the fixed-point property for deformations (maps that are homotopic to the identity). This result answers a question of Bellamy. Our proof resembles an old argument of Brouwer involving uncountably many tangent curves. The curves used by Brouwer were originally defined by Peano. In place of these curves, we use rays that were originally defined by Borsuk.
Keywords:
fixed point, arc-component, deformation, tree-like continuum, Borsuk ray, dog-chases-rabbit argument
Affiliations des auteurs :
Charles L. Hagopian 1
@article{10_4064_fm_155_2_161_176,
author = {Charles L. Hagopian},
title = {The fixed-point property for deformations of tree-like continua},
journal = {Fundamenta Mathematicae},
pages = {161--176},
publisher = {mathdoc},
volume = {155},
number = {2},
year = {1998},
doi = {10.4064/fm-155-2-161-176},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-2-161-176/}
}
TY - JOUR AU - Charles L. Hagopian TI - The fixed-point property for deformations of tree-like continua JO - Fundamenta Mathematicae PY - 1998 SP - 161 EP - 176 VL - 155 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-2-161-176/ DO - 10.4064/fm-155-2-161-176 LA - en ID - 10_4064_fm_155_2_161_176 ER -
%0 Journal Article %A Charles L. Hagopian %T The fixed-point property for deformations of tree-like continua %J Fundamenta Mathematicae %D 1998 %P 161-176 %V 155 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-2-161-176/ %R 10.4064/fm-155-2-161-176 %G en %F 10_4064_fm_155_2_161_176
Charles L. Hagopian. The fixed-point property for deformations of tree-like continua. Fundamenta Mathematicae, Tome 155 (1998) no. 2, pp. 161-176. doi: 10.4064/fm-155-2-161-176
Cité par Sources :