A polarized partition relation and failure of GCH at singular strong limit
Fundamenta Mathematicae, Tome 155 (1998) no. 2, pp. 153-160
The main result is that for λ strong limit singular failing the continuum hypothesis (i.e. $2^{λ} > λ^{+}$), a polarized partition theorem holds.
@article{10_4064_fm_155_2_153_160,
author = {Saharon Shelah},
title = {A polarized partition relation and failure of {GCH} at singular strong limit},
journal = {Fundamenta Mathematicae},
pages = {153--160},
year = {1998},
volume = {155},
number = {2},
doi = {10.4064/fm-155-2-153-160},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-2-153-160/}
}
TY - JOUR AU - Saharon Shelah TI - A polarized partition relation and failure of GCH at singular strong limit JO - Fundamenta Mathematicae PY - 1998 SP - 153 EP - 160 VL - 155 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-2-153-160/ DO - 10.4064/fm-155-2-153-160 LA - en ID - 10_4064_fm_155_2_153_160 ER -
Saharon Shelah. A polarized partition relation and failure of GCH at singular strong limit. Fundamenta Mathematicae, Tome 155 (1998) no. 2, pp. 153-160. doi: 10.4064/fm-155-2-153-160
Cité par Sources :