Distinguishing two partition properties of $ω_1$
Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 95-99.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is consistent that $ω_1→(ω_1,(ω:2))^2$ but $ω_1↛(ω_1,ω+2)^2$.
DOI : 10.4064/fm-155-1-95-99

Péter Komjáth 1

1
@article{10_4064_fm_155_1_95_99,
     author = {P\'eter Komj\'ath},
     title = {Distinguishing two partition properties of $\ensuremath{\omega}_1$},
     journal = {Fundamenta Mathematicae},
     pages = {95--99},
     publisher = {mathdoc},
     volume = {155},
     number = {1},
     year = {1998},
     doi = {10.4064/fm-155-1-95-99},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-95-99/}
}
TY  - JOUR
AU  - Péter Komjáth
TI  - Distinguishing two partition properties of $ω_1$
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 95
EP  - 99
VL  - 155
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-95-99/
DO  - 10.4064/fm-155-1-95-99
LA  - en
ID  - 10_4064_fm_155_1_95_99
ER  - 
%0 Journal Article
%A Péter Komjáth
%T Distinguishing two partition properties of $ω_1$
%J Fundamenta Mathematicae
%D 1998
%P 95-99
%V 155
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-95-99/
%R 10.4064/fm-155-1-95-99
%G en
%F 10_4064_fm_155_1_95_99
Péter Komjáth. Distinguishing two partition properties of $ω_1$. Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 95-99. doi : 10.4064/fm-155-1-95-99. http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-95-99/

Cité par Sources :