Distinguishing two partition properties of $ω_1$
Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 95-99
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is consistent that $ω_1→(ω_1,(ω:2))^2$ but $ω_1↛(ω_1,ω+2)^2$.
@article{10_4064_fm_155_1_95_99,
author = {P\'eter Komj\'ath},
title = {Distinguishing two partition properties of $\ensuremath{\omega}_1$},
journal = {Fundamenta Mathematicae},
pages = {95--99},
publisher = {mathdoc},
volume = {155},
number = {1},
year = {1998},
doi = {10.4064/fm-155-1-95-99},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-95-99/}
}
TY - JOUR AU - Péter Komjáth TI - Distinguishing two partition properties of $ω_1$ JO - Fundamenta Mathematicae PY - 1998 SP - 95 EP - 99 VL - 155 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-95-99/ DO - 10.4064/fm-155-1-95-99 LA - en ID - 10_4064_fm_155_1_95_99 ER -
Péter Komjáth. Distinguishing two partition properties of $ω_1$. Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 95-99. doi: 10.4064/fm-155-1-95-99
Cité par Sources :