On the cardinality and weight spectra of compact spaces, II
Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 91-94.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let B(κ,λ) be the subalgebra of P(κ) generated by $[κ]^{≤λ}$. It is shown that if B is any homomorphic image of B(κ,λ) then either $|B| 2^λ$ or $|B| = |B|^λ$; moreover, if X is the Stone space of B then either $|X| ≤ 2^{2^λ}$ or $|X| = |B| = |B|^λ$. This implies the existence of 0-dimensional compact $T_2$ spaces whose cardinality and weight spectra omit lots of singular cardinals of "small" cofinality.
DOI : 10.4064/fm-155-1-91-94
Keywords: cardinality and weight spectrum, compact space, homomorphism of Boolean algebras

I. Juhász 1 ; S. Shelah 1

1
@article{10_4064_fm_155_1_91_94,
     author = {I. Juh\'asz and S. Shelah},
     title = {On the cardinality and weight spectra of compact spaces, {II}},
     journal = {Fundamenta Mathematicae},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {155},
     number = {1},
     year = {1998},
     doi = {10.4064/fm-155-1-91-94},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-91-94/}
}
TY  - JOUR
AU  - I. Juhász
AU  - S. Shelah
TI  - On the cardinality and weight spectra of compact spaces, II
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 91
EP  - 94
VL  - 155
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-91-94/
DO  - 10.4064/fm-155-1-91-94
LA  - en
ID  - 10_4064_fm_155_1_91_94
ER  - 
%0 Journal Article
%A I. Juhász
%A S. Shelah
%T On the cardinality and weight spectra of compact spaces, II
%J Fundamenta Mathematicae
%D 1998
%P 91-94
%V 155
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-91-94/
%R 10.4064/fm-155-1-91-94
%G en
%F 10_4064_fm_155_1_91_94
I. Juhász; S. Shelah. On the cardinality and weight spectra of compact spaces, II. Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 91-94. doi : 10.4064/fm-155-1-91-94. http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-91-94/

Cité par Sources :