Sequential topological groups of any sequential order under CH
Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 79-89
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For any $α ω_1$ a countable sequential topological group of sequential order α is constructed using CH.
Keywords:
sequential space, sequential order, topological group
Affiliations des auteurs :
Alexander Shibakov 1
@article{10_4064_fm_155_1_79_89,
author = {Alexander Shibakov},
title = {Sequential topological groups of any sequential order under {CH}},
journal = {Fundamenta Mathematicae},
pages = {79--89},
year = {1998},
volume = {155},
number = {1},
doi = {10.4064/fm-155-1-79-89},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-79-89/}
}
TY - JOUR AU - Alexander Shibakov TI - Sequential topological groups of any sequential order under CH JO - Fundamenta Mathematicae PY - 1998 SP - 79 EP - 89 VL - 155 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-79-89/ DO - 10.4064/fm-155-1-79-89 LA - en ID - 10_4064_fm_155_1_79_89 ER -
Alexander Shibakov. Sequential topological groups of any sequential order under CH. Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 79-89. doi: 10.4064/fm-155-1-79-89
Cité par Sources :