Sequential topological groups of any sequential order under CH
Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 79-89.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any $α ω_1$ a countable sequential topological group of sequential order α is constructed using CH.
DOI : 10.4064/fm-155-1-79-89
Keywords: sequential space, sequential order, topological group

Alexander Shibakov 1

1
@article{10_4064_fm_155_1_79_89,
     author = {Alexander Shibakov},
     title = {Sequential topological groups of any sequential order under {CH}},
     journal = {Fundamenta Mathematicae},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {155},
     number = {1},
     year = {1998},
     doi = {10.4064/fm-155-1-79-89},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-79-89/}
}
TY  - JOUR
AU  - Alexander Shibakov
TI  - Sequential topological groups of any sequential order under CH
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 79
EP  - 89
VL  - 155
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-79-89/
DO  - 10.4064/fm-155-1-79-89
LA  - en
ID  - 10_4064_fm_155_1_79_89
ER  - 
%0 Journal Article
%A Alexander Shibakov
%T Sequential topological groups of any sequential order under CH
%J Fundamenta Mathematicae
%D 1998
%P 79-89
%V 155
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-79-89/
%R 10.4064/fm-155-1-79-89
%G en
%F 10_4064_fm_155_1_79_89
Alexander Shibakov. Sequential topological groups of any sequential order under CH. Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 79-89. doi : 10.4064/fm-155-1-79-89. http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-79-89/

Cité par Sources :