The sequential topology on complete Boolean algebras
Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 59-78
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the sequential topology $τ_{s}$ on a complete Boolean algebra B determined by algebraically convergent sequences in B. We show the role of weak distributivity of B in separation axioms for the sequential topology. The main result is that a necessary and sufficient condition for B to carry a strictly positive Maharam submeasure is that B is ccc and that the space $(B,τ_{s})$ is Hausdorff. We also characterize sequential cardinals.
Keywords:
complete Boolean algebra, sequential topology, Maharam submeasure, sequential cardinal
Affiliations des auteurs :
Bohuslav Balcar 1 ; Wiesław Główczyński 1 ; Thomas Jech 1
@article{10_4064_fm_155_1_59_78,
author = {Bohuslav Balcar and Wies{\l}aw G{\l}\'owczy\'nski and Thomas Jech},
title = {The sequential topology on complete {Boolean} algebras},
journal = {Fundamenta Mathematicae},
pages = {59--78},
publisher = {mathdoc},
volume = {155},
number = {1},
year = {1998},
doi = {10.4064/fm-155-1-59-78},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-59-78/}
}
TY - JOUR AU - Bohuslav Balcar AU - Wiesław Główczyński AU - Thomas Jech TI - The sequential topology on complete Boolean algebras JO - Fundamenta Mathematicae PY - 1998 SP - 59 EP - 78 VL - 155 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-59-78/ DO - 10.4064/fm-155-1-59-78 LA - en ID - 10_4064_fm_155_1_59_78 ER -
%0 Journal Article %A Bohuslav Balcar %A Wiesław Główczyński %A Thomas Jech %T The sequential topology on complete Boolean algebras %J Fundamenta Mathematicae %D 1998 %P 59-78 %V 155 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-59-78/ %R 10.4064/fm-155-1-59-78 %G en %F 10_4064_fm_155_1_59_78
Bohuslav Balcar; Wiesław Główczyński; Thomas Jech. The sequential topology on complete Boolean algebras. Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 59-78. doi: 10.4064/fm-155-1-59-78
Cité par Sources :