On a certain map of a triangle
Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 45-57
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper answers some questions asked by Sharkovski concerning the map F:(u,v) ↦ (u(4-u-v),uv) of the triangle Δ = {u,v ≥ 0: u+v ≤ 4}. We construct an absolutely continuous σ-finite invariant measure for F. We also prove the following strange phenomenon. The preimages of side I = Δ ∩ {v=0} form a dense subset $∪F^{-n}(I)$ of Δ and there is another dense set Λ consisting of points whose orbits approach the interval I but are not attracted by I.
@article{10_4064_fm_155_1_45_57,
author = {Grzegorz \'Swirszcz},
title = {On a certain map of a triangle},
journal = {Fundamenta Mathematicae},
pages = {45--57},
publisher = {mathdoc},
volume = {155},
number = {1},
year = {1998},
doi = {10.4064/fm-155-1-45-57},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-45-57/}
}
Grzegorz Świrszcz. On a certain map of a triangle. Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 45-57. doi: 10.4064/fm-155-1-45-57
Cité par Sources :