On a certain map of a triangle
Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 45-57.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The paper answers some questions asked by Sharkovski concerning the map F:(u,v) ↦ (u(4-u-v),uv) of the triangle Δ = {u,v ≥ 0: u+v ≤ 4}. We construct an absolutely continuous σ-finite invariant measure for F. We also prove the following strange phenomenon. The preimages of side I = Δ ∩ {v=0} form a dense subset $∪F^{-n}(I)$ of Δ and there is another dense set Λ consisting of points whose orbits approach the interval I but are not attracted by I.
DOI : 10.4064/fm-155-1-45-57

Grzegorz Świrszcz 1

1
@article{10_4064_fm_155_1_45_57,
     author = {Grzegorz \'Swirszcz},
     title = {On a certain map of a triangle},
     journal = {Fundamenta Mathematicae},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {155},
     number = {1},
     year = {1998},
     doi = {10.4064/fm-155-1-45-57},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-45-57/}
}
TY  - JOUR
AU  - Grzegorz Świrszcz
TI  - On a certain map of a triangle
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 45
EP  - 57
VL  - 155
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-45-57/
DO  - 10.4064/fm-155-1-45-57
LA  - en
ID  - 10_4064_fm_155_1_45_57
ER  - 
%0 Journal Article
%A Grzegorz Świrszcz
%T On a certain map of a triangle
%J Fundamenta Mathematicae
%D 1998
%P 45-57
%V 155
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-45-57/
%R 10.4064/fm-155-1-45-57
%G en
%F 10_4064_fm_155_1_45_57
Grzegorz Świrszcz. On a certain map of a triangle. Fundamenta Mathematicae, Tome 155 (1998) no. 1, pp. 45-57. doi : 10.4064/fm-155-1-45-57. http://geodesic.mathdoc.fr/articles/10.4064/fm-155-1-45-57/

Cité par Sources :