On compact spaces carrying Radon measures of uncountable Maharam type
Fundamenta Mathematicae, Tome 154 (1997) no. 3, pp. 295-304.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If Martin's Axiom is true and the continuum hypothesis is false, and $X$ is a compact Radon measure space with a non-separable $L^1$ space, then there is a continuous surjection from $X$ onto $[0,1]^{ω_1}$.
DOI : 10.4064/fm-154-3-295-304

D. H. Fremlin 1

1
@article{10_4064_fm_154_3_295_304,
     author = {D. H. Fremlin},
     title = {On compact spaces carrying {Radon} measures of uncountable {Maharam} type},
     journal = {Fundamenta Mathematicae},
     pages = {295--304},
     publisher = {mathdoc},
     volume = {154},
     number = {3},
     year = {1997},
     doi = {10.4064/fm-154-3-295-304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-3-295-304/}
}
TY  - JOUR
AU  - D. H. Fremlin
TI  - On compact spaces carrying Radon measures of uncountable Maharam type
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 295
EP  - 304
VL  - 154
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-154-3-295-304/
DO  - 10.4064/fm-154-3-295-304
LA  - en
ID  - 10_4064_fm_154_3_295_304
ER  - 
%0 Journal Article
%A D. H. Fremlin
%T On compact spaces carrying Radon measures of uncountable Maharam type
%J Fundamenta Mathematicae
%D 1997
%P 295-304
%V 154
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-154-3-295-304/
%R 10.4064/fm-154-3-295-304
%G en
%F 10_4064_fm_154_3_295_304
D. H. Fremlin. On compact spaces carrying Radon measures of uncountable Maharam type. Fundamenta Mathematicae, Tome 154 (1997) no. 3, pp. 295-304. doi : 10.4064/fm-154-3-295-304. http://geodesic.mathdoc.fr/articles/10.4064/fm-154-3-295-304/

Cité par Sources :