On compact spaces carrying Radon measures of uncountable Maharam type
Fundamenta Mathematicae, Tome 154 (1997) no. 3, pp. 295-304
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If Martin's Axiom is true and the continuum hypothesis is false, and $X$ is a compact Radon measure space with a non-separable $L^1$ space, then there is a continuous surjection from $X$ onto $[0,1]^{ω_1}$.
@article{10_4064_fm_154_3_295_304,
author = {D. H. Fremlin},
title = {On compact spaces carrying {Radon} measures of uncountable {Maharam} type},
journal = {Fundamenta Mathematicae},
pages = {295--304},
publisher = {mathdoc},
volume = {154},
number = {3},
year = {1997},
doi = {10.4064/fm-154-3-295-304},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-3-295-304/}
}
TY - JOUR AU - D. H. Fremlin TI - On compact spaces carrying Radon measures of uncountable Maharam type JO - Fundamenta Mathematicae PY - 1997 SP - 295 EP - 304 VL - 154 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-154-3-295-304/ DO - 10.4064/fm-154-3-295-304 LA - en ID - 10_4064_fm_154_3_295_304 ER -
%0 Journal Article %A D. H. Fremlin %T On compact spaces carrying Radon measures of uncountable Maharam type %J Fundamenta Mathematicae %D 1997 %P 295-304 %V 154 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-154-3-295-304/ %R 10.4064/fm-154-3-295-304 %G en %F 10_4064_fm_154_3_295_304
D. H. Fremlin. On compact spaces carrying Radon measures of uncountable Maharam type. Fundamenta Mathematicae, Tome 154 (1997) no. 3, pp. 295-304. doi: 10.4064/fm-154-3-295-304
Cité par Sources :